Channelpedia

PubMed 11880533


Referenced in: none

Automatically associated channels: Kv11.1 , Kv7.3



Title: Dominant-negative subunits reveal potassium channel families that contribute to M-like potassium currents.

Authors: A A Selyanko, P Delmas, J K Hadley, L Tatulian, I C Wood, M Mistry, B London, D A Brown

Journal, date & volume: J. Neurosci., 2002 Mar 1 , 22, RC212

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/11880533


Abstract
M-currents are K+ currents generated by members of the KCNQ family of K+ channels (Wang et al., 1998). However, in some cells, M-like currents may be contaminated by members of other K+ channel gene families, such as the erg family (Meves et al., 1999; Selyanko et al., 1999). In the present experiments, we have used the acute expression of pore-defective mutants of KCNQ3 (DN-KCNQ3) and Merg1a (DN-Merg1a) as dominant negatives to separate the contributions of these two families to M-like currents in NG108-15 neuroblastoma hybrid cells and rat sympathetic neurons. Two kinetically and pharmacologically separable components of M-like current could be recorded from NG108-15 cells that were individually suppressed by DN-Merg1a and DN-KCNQ3, respectively. In contrast, only DN-KCNQ3, and not DN-Merg1a, reduced currents recorded from sympathetic neurons. Pharmacological tests suggested that the residual current in DN-KCNQ3-treated sympathetic neurons was carried by residual KCNQ channels. Ineffectiveness of DN-Merg1a in sympathetic neurons was not caused by lack of expression, as judged by confocal microscopy of Flag-tagged DN-Merg1a. These results accord with previous inferences regarding the roles of erg and KCNQ channels in generating M-like currents. This experimental approach should therefore be useful in delineating the contributions of members of these two gene families to K+ currents in other cells.