PubMed 15223309
Referenced in: none
Automatically associated channels: Kir2.3
Title: Beta-bungarotoxin-induced depletion of synaptic vesicles at the mammalian neuromuscular junction.
Authors: S Prasarnpun, J Walsh, J B Harris
Journal, date & volume: Neuropharmacology, 2004 Aug , 47, 304-14
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/15223309
Abstract
The neurotoxic phospholipase A(2), beta-bungarotoxin, caused the failure of the mechanical response of the indirectly stimulated rat diaphragm. Exposure to beta-bungarotoxin had no effect on the response of the muscle to direct stimulation. Resting membrane potentials of muscle fibres exposed to the toxin were similar to control values, and the binding of FITC-labelled alpha-bungarotoxin to nAChR at the neuromuscular junction was unchanged. Motor nerve terminal boutons at a third of cell junctions were destroyed by exposure to beta-bungarotoxin leaving only a synaptic gutter filled with Schwann cell processes and debris. At other junctions, some or all boutons survived exposure to the toxin. Synaptic vesicle density in surviving terminal boutons was reduced by 80% and synaptophysin immunoreactivity by >60% in preparations exposed to beta-bungarotoxin, but syntaxin and SNAP-25 immunoreactivity was largely unchanged. Terminal bouton area was also unchanged. The depletion of synaptic vesicles was completely prevented by prior exposure to botulinum toxin C and significantly reduced by prior exposure to conotoxin omega-MVIIC. The data suggest that synaptic vesicle depletion is caused primarily by a toxin-induced entry of Ca(2+) into motor nerve terminals via voltage gated Ca(2+) channels and an enhanced exocytosis via the formation of t- and v-SNARE complexes.