PubMed 15047026
Referenced in: none
Automatically associated channels: HCN1
Title: Characterisation of hyperpolarization-activated currents (I(h)) in the medial septum/diagonal band complex in the mouse.
Authors: Neil P Morris, Robert E W Fyffe, Brian Robertson
Journal, date & volume: Brain Res., 2004 Apr 23 , 1006, 74-86
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/15047026
Abstract
Hyperpolarization-activated cyclic nucleotide gated (HCN) channel subunits are distributed widely, but selectively, in the central nervous system, and underlie hyperpolarization-activated currents (I(h)) that contribute to rhythmicity in a variety of neurons. This study investigates, using current and voltage-clamp techniques in brain slices from young mice, the properties of I(h) currents in medial septum/diagonal band (MS/DB) neurons. Subsets of neurons in this complex, including GABAergic and cholinergic neurons, innervate the hippocampal formation, and play a role in modulating hippocampal theta rhythm. In support of a potential role for I(h) in regulating MS/DB firing properties and consequently hippocampal neuron rhythmicity, I(h) currents were present in around 60% of midline MS/DB complex neurons. The I(h) currents were sensitive to the selective blocker ZD7288 (10 microM). The I(h) current had a time constant of activation of around 220 ms (at -130 mV), and tail current analysis revealed a half-activation voltage of -98 mV. Notably, the amplitude and kinetics of I(h) currents in MS/DB neurons were insensitive to the cAMP membrane permeable analogue 8-bromo-cAMP (1 mM), and application of muscarine (100 microM). Immunofluoresence using antibodies against HCN1, 2 and 4 channel subunits revealed that all three HCN subunits are expressed in neurons in the MS/DB, including neurons that express the calcium binding protein parvalbumin (marker of fast spiking GABAergic septo-hippocampal projection neurons). The results demonstrate, for the first time, that specific HCN channel subunits are likely to be coexpressed in subsets of MS/DB neurons, and that the resultant I(h) currents show both similarities, and differences, to previously described I(h) currents in other CNS neurons.