Channelpedia

PubMed 26931316


Referenced in: none

Automatically associated channels: Slo1



Title: Acid-sensing ion channels are tuned to follow high-frequency stimuli.

Authors: David M MacLean, Vasanthi Jayaraman

Journal, date & volume: J. Physiol. (Lond.), 2016 May 15 , 594, 2629-45

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/26931316


Abstract
Acid-sensing ion channels (ASICs) act as neurotransmitter receptors by responding to synaptic cleft acidification. We investigated how ASIC1a homomers and ASIC1a/2a heteromers respond to brief stimuli, jumping from pH 8.0 to 5.0, approximating the time course of neurotransmitter in the cleft. We find that ASICs deactivate surprisingly fast in response to such brief stimuli from pH 8.0 to 5.0, whereas they desensitize comparatively slowly to prolonged activation. The combination of unusually fast deactivation with slow desensitzation enables recombinant ASIC1a homomers and ASIC1a/2a heteromers, as well as native ASICs of sensory neurons, to follow trains of such brief pH 8.0 to 5.0 stimuli at high frequencies. This capacity for high-frequency signalling persists under a physiological pH of 7.4 with ASIC1a/2a heteromers, suggesting that they may sustain postsynaptic responses when other receptors desensitize.The neurotransmitter-gated ion channels that underlie rapid synaptic transmission are often subjected to bursts of very brief neurotransmitter release at high frequencies. When challenged with such short duration high-frequency stimuli, neurotransmitter-gated ion channels generally exhibit the common response of desensitization. Recently, acid-sensing ion channels (ASICs) were shown to act as neurotransmitter-gated ion channels because postsynaptic ASICs can be activated by the transient acidification of the synaptic cleft accompanying neurotransmission. In the present study, we examined the responses of recombinant ASIC1a homomers, ASIC1a/2a heteromers and native ASICs from sensory neurons to 1 ms acidification stimuli, switching from pH 8.0 to 5.0, as either single pulses or trains of pulses at physiologically relevant frequencies. We found that ASIC deactivation is extremely fast and, in contrast to most other neurotransmitter-gated ion channels, ASICs show no desensitization during high-frequency stimulus trains under these conditions. We also found that accelerating ASIC desensitization by anion substitution can induce depression during high-frequency trains. When using a baseline physiological pH of 7.4, the ASIC1a responses were too small to reliably measure, presumably as a result of steady-state desensitization. However, ASIC1a/2 heteromers gave robust responses when using a baseline pH of 7.4 and were also able to sustain these responses during high-frequency stimulus trains. In conclusion, we report that the slow desensitization and fast deactivation of ASIC1a/2a heteromers enables them to sustain postsynaptic responses to bursts at high frequencies at a physiological pH that may desensitize other receptors.