Channelpedia

PubMed 25081057


Referenced in: none

Automatically associated channels: Slo1



Title: Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model.

Authors: N Lozovaya, S Gataullina, T Tsintsadze, V Tsintsadze, E Pallesi-Pocachard, M Minlebaev, N A Goriounova, E Buhler, F Watrin, S Shityakov, A J Becker, A Bordey, M Milh, D Scavarda, C Bulteau, G Dorfmuller, O Delalande, A Represa, C Cardoso, O Dulac, Y Ben-Ari, N Burnashev

Journal, date & volume: Nat Commun, 2014 , 5, 4563

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/25081057


Abstract
Tuberous sclerosis complex (TSC), caused by dominant mutations in either TSC1 or TSC2 tumour suppressor genes is characterized by the presence of brain malformations, the cortical tubers that are thought to contribute to the generation of pharmacoresistant epilepsy. Here we report that tuberless heterozygote Tsc1(+/-) mice show functional upregulation of cortical GluN2C-containing N-methyl-D-aspartate receptors (NMDARs) in an mTOR-dependent manner and exhibit recurrent, unprovoked seizures during early postnatal life (<P19). Seizures are generated intracortically in the granular layer of the neocortex. Slow kinetics of aberrant GluN2C-mediated currents in spiny stellate cells promotes excessive temporal integration of persistent NMDAR-mediated recurrent excitation and seizure generation. Accordingly, specific GluN2C/D antagonists block seizures in Tsc1(+/-) mice in vivo and in vitro. Likewise, GluN2C expression is upregulated in TSC human surgical resections, and a GluN2C/D antagonist reduces paroxysmal hyperexcitability. Thus, GluN2C receptor constitutes a promising molecular target to treat epilepsy in TSC patients.