Channelpedia

PubMed 26008231


Referenced in: none

Automatically associated channels: TASK1



Title: Natural compounds interacting with nicotinic acetylcholine receptors: from low-molecular weight ones to peptides and proteins.

Authors: Denis Kudryavtsev, Irina Shelukhina, Catherine Vulfius, Tatyana Makarieva, Valentin Stonik, Maxim Zhmak, Igor Ivanov, Igor Kasheverov, Yuri Utkin, Victor Tsetlin

Journal, date & volume: Toxins (Basel), 2015 May , 7, 1683-701

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/26008231


Abstract
Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds.