Channelpedia

PubMed 24921942


Referenced in: none

Automatically associated channels: Slo1 , TASK1



Title: Inhibition of the polyamine system counteracts β-amyloid peptide-induced memory impairment in mice: involvement of extrasynaptic NMDA receptors.

Authors: Guilherme Monteiro Gomes, Gerusa Duarte Dalmolin, Julia Bär, Anna Karpova, Carlos Fernando Mello, Michael R Kreutz, Maribel Antonello Rubin

Journal, date & volume: PLoS ONE, 2014 , 9, e99184

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/24921942


Abstract
In Alzheimer's disease (AD), the β-amyloid peptide (Aβ) has been causally linked to synaptic dysfunction and cognitive impairment. Several studies have shown that N-Methyl-D-Aspartate receptors (NMDAR) activation is involved in the detrimental actions of Aβ. Polyamines, like spermidine and spermine, are positive modulators of NMDAR function and it has been shown that their levels are regulated by Aβ. In this study we show here that interruption of NMDAR modulation by polyamines through blockade of its binding site at NMDAR by arcaine (0.02 nmol/site), or inhibition of polyamine synthesis by DFMO (2.7 nmol/site), reverses Aβ25-35-induced memory impairment in mice in a novel object recognition task. Incubation of hippocampal cell cultures with Aβ25-35 (10 µM) significantly increased the nuclear accumulation of Jacob, which is a hallmark of NMDAR activation. The Aβ-induced nuclear translocation of Jacob was blocked upon application of traxoprodil (4 nM), arcaine (4 µM) or DFMO (5 µM), suggesting that activation of the polyamine binding site at NMDAR located probably at extrasynaptic sites might underlie the cognitive deficits of Aβ25-35-treated mice. Extrasynaptic NMDAR activation in primary neurons results in a stripping of synaptic contacts and simplification of neuronal cytoarchitecture. Aβ25-35 application in hippocampal primary cell cultures reduced dendritic spine density and induced alterations on spine morphology. Application of traxoprodil (4 nM), arcaine (4 µM) or DFMO (5 µM) reversed these effects of Aβ25-35. Taken together these data provide evidence that polyamine modulation of extrasynaptic NMDAR signaling might be involved in Aβ pathology.