PubMed 12933359
Referenced in: none
Automatically associated channels: Kir2.3
Title: Urea transporter expression in aging kidney and brain during dehydration.
Authors: M-M Trinh-Trang-Tan, G Geelen, L Teillet, B Corman
Journal, date & volume: Am. J. Physiol. Regul. Integr. Comp. Physiol., 2003 Dec , 285, R1355-65
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/12933359
Abstract
Aging is commonly associated with defective urine-concentrating ability. The present study examined how the kidney and the brain of senescent (30-mo-old) female WAG/Rij rats respond to dehydration induced by 2 days of water deprivation in terms of urea transporter (UT) regulation. In euhydrated situation, senescent rats exhibited similar vasopressin plasma level but lower urine osmolality and papillary urea concentration and markedly reduced kidney UT-A1, UT-A3, and UT-B1 abundances compared with adult (10-mo-old) rats. Senescent rats responded to dehydration similarly to adult rats by a sixfold increase in vasopressin plasma level. Their papillary urea concentration was doubled, without, however, attaining that of dehydrated adult rats. Such an enhanced papillary urea sequestration occurred with a great fall of both UT-A1 and UT-A3 abundances in the tip of inner medulla and an increased UT-A1 abundance in the base of inner medulla. UT-A2 and UT-B1 were unchanged. These data suggest that the inability of control and thirsted senescent rats to concentrate urine as much as their younger counterparts derives from lower papillary urea concentration. In aging brain, UT-B1 abundance was increased twofold together with a fourfold increase in aquaporin-4 abundance. Dehydration did not alter the abundance of these transporters.