Channelpedia

PubMed 25669528


Referenced in: none

Automatically associated channels: Slo1



Title: Dissociation of internal energy-selected methyl bromide ion revealed from threshold photoelectron-photoion coincidence velocity imaging.

Authors: Xiaofeng Tang, Xiaoguo Zhou, Zhongfa Sun, Shilin Liu, Fuyi Liu, Liusi Sheng, Bing Yan

Journal, date & volume: J Chem Phys, 2014 Jan 28 , 140, 044312

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/25669528


Abstract
Dissociative photoionization of methyl bromide (CH3Br) in an excitation energy range of 10.45-16.90 eV has been investigated by using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. The coincident time-of-flight mass spectra indicate that the ground state X(2)E of CH3Br(+) is stable, and both A(2)A1 and B(2)E ionic excited states are fully dissociative to produce the unique fragment ion of CH3 (+). From TPEPICO 3D time-sliced velocity images of CH3 (+) dissociated from specific state-selected CH3Br(+) ion, kinetic energy release distribution (KERD) and angular distribution of CH3 (+) fragment ion are directly obtained. Both spin-orbit states of Br((2)P) atom can be clearly observed in fast dissociation of CH3Br(+)(A(2)A1) ion along C-Br rupture, while a KERD of Maxwell-Boltzmann profile is obtained in dissociation of CH3Br(+)(B(2)E) ion. With the aid of the re-calculated potential energy curves of CH3Br(+) including spin-orbit coupling, dissociation mechanisms of CH3Br(+) ion in A(2)A1 and B(2)E states along C-Br rupture are revealed. For CH3Br(+)(A(2)A1) ion, the CH3 (+) + Br((2)P1/2) channel is occurred via an adiabatic dissociation by vibration, while the Br((2)P3/2) formation is through vibronic coupling to the high vibrational level of X(2)E state followed by rapid dissociation. C-Br bond breaking of CH3Br(+)(B(2)E) ion can occur via slow internal conversion to the excited vibrational level of the lower electronic states and then dissociation.