Channelpedia

PubMed 24174527


Referenced in: none

Automatically associated channels: TRP , TRPV , TRPV1 , TRPV3



Title: Carboxyl-terminal domain of transient receptor potential vanilloid 1 contains distinct segments differentially involved in capsaicin- and heat-induced desensitization.

Authors: John Joseph, Sen Wang, Jongseok Lee, Jin Y Ro, Man-Kyo Chung

Journal, date & volume: J. Biol. Chem., 2013 Dec 13 , 288, 35690-702

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/24174527


Abstract
Multiple Ca(2+)-dependent processes are involved in capsaicin-induced desensitization of transient receptor potential vanilloid 1 (TRPV1), but desensitization of TRPV1 by heat occurs even in the absence of extracellular Ca(2+), although the mechanisms are unknown. In this study, we tested the hypothesis that capsaicin and heat desensitize TRPV1 through distinct mechanisms involving distinct structural segments of TRPV1. In HEK293 cells that heterologously express TRPV1, we found that heat-induced desensitization was not affected by the inclusion of intracellular ATP or alanine mutation of Lys(155), both of which attenuate capsaicin-induced desensitization, suggesting that heat-induced desensitization occurs through mechanisms distinct from capsaicin-induced desensitization. To determine protein domains involved in heat-induced desensitization, we generated chimeric proteins between TRPV1 and TRPV3, a heat-gated channel lacking heat-induced desensitization. We found that TRPV1 with the carboxyl-terminal domain (CTD) of TRPV3 retained heat activation but was impaired in heat-induced desensitization. Further experiments using chimeric or deletion mutants within TRPV1 CTD indicated that the distal half of CTD regulates the activation and desensitization of TRPV1 in modality-specific manners. Within the distal CTD, we identified two segments that distinctly regulated capsaicin- and heat-induced desensitization. The results suggest that the activation and desensitization of TRPV1 by capsaicin and heat can be modulated differentially and disproportionally through different regions of TRPV1 CTD. Identifying the domains involved in thermal regulation of TRPV1 may facilitate the development of novel anti-hyperalgesic approaches aimed at attenuating activation and enhancing desensitization of TRPV1 by thermal stimuli.