PubMed 23970553
Referenced in: none
Automatically associated channels: TRP , TRPV , TRPV5
Title: The epithelial calcium channel TRPV5 is regulated differentially by klotho and sialidase.
Authors: Elizabeth H P Leunissen, Anil V Nair, Christian Büll, Dirk J Lefeber, Floris L van Delft, René J M Bindels, Joost G J Hoenderop
Journal, date & volume: J. Biol. Chem., 2013 Oct 11 , 288, 29238-46
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/23970553
Abstract
The transient receptor potential vanilloid type 5 (TRPV5) Ca(2+) channel facilitates transcellular Ca(2+) transport in the distal convoluted tubule (DCT) of the kidney. The channel is glycosylated with a complex type N-glycan and it has been postulated that hydrolysis of the terminal sialic acid(s) stimulate TRPV5 activity. The present study delineates the role of the N-glycan in TRPV5 activity using biochemical assays in Human Embryonic Kidney 293 cells expressing TRPV5, isoelectric focusing and total internal reflection fluorescent microscopy. The anti-aging hormone klotho and other glycosidases stimulate TRPV5-dependent Ca(2+) uptake. Klotho was found to increase the plasma membrane stability of TRPV5, via the TRPV5 N-glycan. Sialidase mimicked this stimulatory action. However, this effect was independent of the N-glycosylation state of TRPV5, since the N-glycosylation mutant (TRPV5(N358Q)) was activated to the same extent. We showed that the increased TRPV5 activity after sialidase treatment is caused by inhibition of lipid raft-mediated internalization. In addition, sialidase modified the N-glycan of transferrin, a model glycoprotein, differently from klotho. Previous studies showed that after klotho treatment, galectin-1 binds the TRPV5 N-glycan and thereby increases TRPV5 activity. However, galectin-3, but not galectin-1, was expressed in the DCT. Furthermore, an increase in TRPV5-mediated Ca(2+) uptake was detected after galectin-3 treatment. In conclusion, two distinct TRPV5 stimulatory mechanisms were demonstrated; a klotho-mediated effect that is dependent on the N-glycan of TRPV5 and a sialidase-mediated stimulation that is lipid raft-dependent and independent of the N-glycan of TRPV5.