Channelpedia

PubMed 23469136


Referenced in: none

Automatically associated channels: Kv2.1



Title: Stimulation of inositol 1,4,5-trisphosphate (IP3) receptor subtypes by adenophostin A and its analogues.

Authors: Huma Saleem, Stephen C Tovey, Andrew M Riley, Barry V L Potter, Colin W Taylor

Journal, date & volume: PLoS ONE, 2013 , 8, e58027

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/23469136


Abstract
Inositol 1,4,5-trisphosphate receptors (IP3R) are intracellular Ca(2+) channels. Most animal cells express mixtures of the three IP3R subtypes encoded by vertebrate genomes. Adenophostin A (AdA) is the most potent naturally occurring agonist of IP3R and it shares with IP3 the essential features of all IP3R agonists, namely structures equivalent to the 4,5-bisphosphate and 6-hydroxyl of IP3. The two essential phosphate groups contribute to closure of the clam-like IP3-binding core (IBC), and thereby IP3R activation, by binding to each of its sides (the α- and β-domains). Regulation of the three subtypes of IP3R by AdA and its analogues has not been examined in cells expressing defined homogenous populations of IP3R. We measured Ca(2+) release evoked by synthetic adenophostin A (AdA) and its analogues in permeabilized DT40 cells devoid of native IP3R and stably expressing single subtypes of mammalian IP3R. The determinants of high-affinity binding of AdA and its analogues were indistinguishable for each IP3R subtype. The results are consistent with a cation-π interaction between the adenine of AdA and a conserved arginine within the IBC α-domain contributing to closure of the IBC. The two complementary contacts between AdA and the α-domain (cation-π interaction and 3″-phosphate) allow activation of IP3R by an analogue of AdA (3″-dephospho-AdA) that lacks a phosphate group equivalent to the essential 5-phosphate of IP3. These data provide the first structure-activity analyses of key AdA analogues using homogenous populations of all mammalian IP3R subtypes. They demonstrate that differences in the Ca(2+) signals evoked by AdA analogues are unlikely to be due to selective regulation of IP3R subtypes.