PubMed 15169846
Referenced in: none
Automatically associated channels: Kv11.1
Title: Functional interaction between extracellular sodium, potassium and inactivation gating in HERG channels.
Authors: Franklin M Mullins, Svetlana Z Stepanovic, Niloufar B Gillani, Alfred L George, Jeffrey R Balser
Journal, date & volume: J. Physiol. (Lond.), 2004 Aug 1 , 558, 729-44
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/15169846
Abstract
We have studied the interaction between extracellular K(+) (K(+)(o)) and extracellular Na(+) (Na(+)(o)) in human ether-à-go-go related gene (HERG)-encoded K(+) channels expressed in Chinese hamster ovary (CHO-K1) cells, using the whole-cell voltage clamp technique. Prior studies indicate that Na(+)(o) potently inhibits HERG current (IC(50) 3 mm) by binding to an outer pore site, and also speeds recovery from inactivation. In this study, we sought to explore the relationship between the Na(+)(o) effect on recovery and Na(+)(o) inhibition of HERG current, and to determine whether inactivation gating plays a critical role in Na(+)(o) inhibition of HERG current. Na(+)(o) concentration-response relationships for current inhibition and speeding of recovery were different, with Na(+)(o) less potent at speeding recovery. Na(+)(o) inhibition of HERG current was relieved by physiological [K(+)](o), while Na(+)(o) speeded recovery from inactivation similarly in the absence or presence of physiological [K(+)](o). To examine the link between Na(+)(o) block and inactivation using an independent approach, we studied hyperpolarization-activated currents uncoupled from inactivation in the S4-S5 linker mutant D540K. Depolarization-activated D540K currents were inhibited by Na(+)(o), while hyperpolarization-activated currents were augmented by Na(+)(o). This result reveals a direct link between Na(+)(o) inhibition and a depolarization-induced conformational change, most likely inactivation. We attempted to simulate the disparate concentration-response relationships for the two effects of Na(+)(o) using a kinetic model that included Na(+)(o) site(s) affected by permeation and gating. While a model with only a single dynamic Na(+)(o) site was inadequate, a model with two distinct Na(+)(o) sites was sufficient to reproduce the data.