Channelpedia

PubMed 22300168


Referenced in: none

Automatically associated channels: Kv11.1 , Slo1



Title: Does terfenadine-induced ventricular tachycardia/fibrillation directly relate to its QT prolongation and Torsades de Pointes?

Authors: Hua Rong Lu, An N Hermans, David J Gallacher

Journal, date & volume: Br. J. Pharmacol., 2012 Jun , 166, 1490-502

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/22300168


Abstract
Terfenadine has been reported to cause cardiac death. Hence, we investigated its pro-arrhythmic potential in various in vitro models.Pro-arrhythmic effects of terfenadine were investigated in rabbit isolated hearts and left ventricular wedge preparations. Also, using whole-cell patch-clamp recording, we examined its effect on the human ether-à-go-go-related gene (hERG) current in HEK293 cells transfected with hERG and on the I(Na) current in rabbit ventricular cells and human atrial myocytes.Terfenadine concentration- and use-dependently inhibited I(Na) in rabbit myocytes and in human atrial myocytes and also inhibited the hERG. In both the rabbit left ventricular wedge and heart preparations, terfenadine at 1 µM only slightly prolonged the QT- and JT-intervals but at 10 µM, it caused a marked widening of the QRS complex, cardiac wavelength shortening, incidences of in-excitability and non-TdP-like ventricular tachycardia/fibrillation (VT/VF) without prolongation of the QT/JT-interval. At 10 µM terfenadine elicited a lower incidence of early afterdepolarizations versus non- Torsades de Pointes (TdP)-like VT/VF (100% incidence), and did not induce TdPs. Although the concentration of terfenadine in the tissue-bath was low, it accumulated within the heart tissue.Our data suggest that: (i) the induction of non-TdP-like VT/VF, which is caused by slowing of conduction via blockade of I(Na) (like Class Ic flecainide), may constitute a more important risk for terfenadine-induced cardiac death; (ii) although terfenadine is a potent hERG blocker, the risk for non-TdP-like VT/VF exceeds the risk for TdPs; and (iii) cardiac wavelength (λ) could serve as a biomarker to predict terfenadine-induced VT/VF.