PubMed 22431254
Referenced in: none
Automatically associated channels: Kir4.1 , Slo1
Title: Kir4.1 channels mediate a depolarization of hippocampal astrocytes under hyperammonemic conditions in situ.
Authors: Jonathan Stephan, Nicole Haack, Karl W Kafitz, Simone Durry, Daniel Koch, Peter Hochstrate, Gerald Seifert, Christian Steinhäuser, Christine R Rose
Journal, date & volume: Glia, 2012 May , 60, 965-78
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/22431254
Abstract
Increased ammonium (NH(4) (+) ) concentration in the brain is the prime candidate responsible for hepatic encephalopathy (HE), a serious neurological disorder caused by liver failure and characterized by disturbed glutamatergic neurotransmission and impaired glial function. We investigated the mechanisms of NH(4) (+) -induced depolarization of astrocytes in mouse hippocampal slices using whole-cell patch-clamp and potassium-selective microelectrodes. At postnatal days (P) 18-21, perfusion with 5 mM NH(4) (+) evoked a transient increase in the extracellular potassium concentration ([K(+) ](o) ) by about 1 mM. Astrocytes depolarized by on average 8 mV and then slowly repolarized to a plateau depolarization of 6 mV, which was maintained during NH(4) (+) perfusion. In voltage-clamped astrocytes, NH(4) (+) induced an inward current and a reduction in membrane resistance. Amplitudes of [K(+) ](o) transients and astrocyte depolarization/inward currents increased from P3-4 to P18-21. Perfusion with 100 μM Ba(2+) did not alter [K(+) ](o) transients but strongly reduced both astrocyte depolarization and inward currents. NH(4) (+) -induced depolarization and inward currents were also virtually absent in slices from Kir4.1 -/- mice, while [K(+) ](o) transients were unaltered. Blocking Na(+) /K(+) -ATPase with ouabain caused an immediate and complex increase in [K(+) ](o) . Taken together, our results are in agreement with the hypothesis that reduced uptake of K(+) by the Na(+) , K(+) -ATPase in the presence of NH(4) (+) disturbs the extracellular K(+) homeostasis. Furthermore, astrocytes depolarize in response to the increase in [K(+) ](o) and by influx of NH(4) (+) through Kir4.1 channels. The depolarization reduces the astrocytes' capacity for channel-mediated flux of K(+) and for uptake of glutamate and might hereby contribute to the pathology of HE.