Channelpedia

PubMed 21708171


Referenced in: none

Automatically associated channels: Slo1



Title: Calmodulin binding proteins provide domains of local Ca2+ signaling in cardiac myocytes.

Authors: Jeffrey J Saucerman, Donald M Bers

Journal, date & volume: J. Mol. Cell. Cardiol., 2012 Feb , 52, 312-6

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/21708171


Abstract
Calmodulin (CaM) acts as a common Ca(2+) sensor for many signaling pathways, transducing local Ca(2+) signals into specific cellular outcomes. Many of CaM's signaling functions can be explained by its unique biochemical properties, including high and low affinity Ca(2+)-binding sites with slow and fast kinetics, respectively. CaM is expected to have a limited spatial range of action, emphasizing its role in local Ca(2+) signaling. Interactions with target proteins further fine-tune CaM signal transduction. Here, we focus on only three specific cellular targets for CaM signaling in cardiac myocytes: the L-type Ca(2+) channel, the ryanodine receptor, and the IP(3) receptor. We elaborate a working hypothesis that each channel is regulated by two distinct functional populations of CaM: dedicated CaM and promiscuous CaM. Dedicated CaM is typically tethered to each channel and directly regulates channel activity. In addition, a local pool of promiscuous CaM appears poised to sense local Ca(2+) signals and trigger downstream pathways such as Ca(2+)/CaM dependent-protein kinase II and calcineurin. Understanding how promiscuous CaM coordinates multiple distinct signaling pathways remains a challenge, but is aided by the use of mathematical modeling and a new generation of fluorescent biosensors. This article is part of a special issue entitled "Local Signaling in Myocytes."