Channelpedia

PubMed 15277600


Referenced in: none

Automatically associated channels: Kir2.3



Title: Presynaptic activity and Ca2+ entry are required for the maintenance of NMDA receptor-independent LTP at visual cortical excitatory synapses.

Authors: Hong Nian Liu, Tohru Kurotani, Ming Ren, Kazumasa Yamada, Yumiko Yoshimura, Yukio Komatsu

Journal, date & volume: J. Neurophysiol., 2004 Aug , 92, 1077-87

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/15277600


Abstract
We have shown that some neural activity is required for the maintenance of long-term potentiation (LTP) at visual cortical inhibitory synapses. We tested whether this was also the case in N-methyl-d-aspartate (NMDA) receptor-independent LTP of excitatory connections in layer 2/3 cells of developing rat visual cortex. This LTP occurred after 2-Hz stimulation was applied for 15 min and always persisted for several hours while test stimulation was continued at 0.1 Hz. When test stimulation was stopped for 1 h after LTP induction, only one-third of the LTP instances disappeared, but most did disappear under a pharmacological suppression of spontaneous firing, indicating that LTP maintenance requires either evoked or spontaneous activities. LTP was totally abolished by a temporary blockade of action potentials with lidocaine or the removal of extracellular Ca(2+) after LTP induction, but it persisted under a voltage clamp of postsynaptic cells or after a temporary blockade of postsynaptic activity with the glutamate receptor antagonist kynurenate, suggesting that LTP maintenance requires presynaptic, but not postsynaptic, firing and Ca(2+) entry. More than one-half of the LTP instances were abolished after a pharmacological blockade of P-type Ca(2+) channels, whereas it persisted after either L-type or Ni(2+)-sensitive Ca(2+) channel blockades. These results show that the maintenance of NMDA receptor-independent excitatory LTP requires presynaptic firing and Ca(2+) channel activation as inhibitory LTP, although the necessary level of firing and Ca(2+) entry seems lower for the former than the latter and the Ca(2+) channel types involved are only partly the same.