PubMed 22421816
Referenced in: none
Automatically associated channels: TRP
Title: Sorption of small molecule vapours by single crystals of [Pt{4'-(Ph)trpy}(NCS)]SbF(6) where trpy = 2,2':6',2''-terpyridine: a porous material with a structure stabilised by extended π-π interactions.
Authors: John S Field, Orde Q Munro, Bradley P Waldron
Journal, date & volume: , 2012 Mar 16 , ,
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/22421816
Abstract
Treatment of [Pt{4'-(Ph)trpy}Cl]SbF(6) with AgSCN in a metathesis reaction in refluxing acetonitrile affords, after work-up, single crystals of [Pt{4'-(Ph)trpy}(NCS)]SbF(6)·CH(3)CN, where trpy is 2,2':6',2''-terpyridine. These crystals lose solvent to give single crystals of [Pt{4'-(Ph)trpy}(NCS)]SbF(6) (1). An X-ray crystal structure determination of 1 shows that the SCN(-) ion is N-bound and that the cation as a whole is approximately planar. Compound 1 is porous with "empty" channels that corkscrew through the crystal: this crystal structure is stabilised by extended π-π interactions between the planar cations. When a single crystal of 1 is exposed to vapours of acetonitrile the vapours are sorbed without loss of single crystallinity, as confirmed by crystal structure determinations of 1 and 1·CH(3)CN using the same single crystal. Similarly, single crystals of 1 sorb vapours of methanol without loss of single crystallinity, as confirmed by a crystal structure determination of 1·CH(3)OH. We also report the crystal structure of 1·(CH(3))(2)CO; however, in this case the single crystal was grown directly from acetone. Compound 1 and its solvates are all yellow. Nevertheless, there are differences between the emission spectra recorded for 1 and its solvates in the solid state. Thus, whereas 1 exhibits very weak multiple emission from (3)MLCT (MLCT = metal-to-ligand charge transfer) and excimeric (3)π-π* excited states, 1·CH(3)CN and 1·(CH(3))(2)CO both exhibit more intense (3)MLCT emission; and the emission by 1·CH(3)OH is complicated by the presence of metallophilic interactions in the crystal. We discuss the role of the solvent in causing these differences.