Channelpedia

PubMed 21945155


Referenced in: none

Automatically associated channels: TRP , TRPM , TRPM8 , TRPV , TRPV1



Title: Thermo-sensitive transient receptor potential vanilloid channel-1 regulates intracellular calcium and triggers chromogranin A secretion in pancreatic neuroendocrine BON-1 tumor cells.

Authors: Stefan Mergler, Marek Skrzypski, Maciej Sassek, Piotr Pietrzak, Christina Pucci, Bertram Wiedenmann, Mathias Z Strowski

Journal, date & volume: Cell. Signal., 2012 Jan , 24, 233-46

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/21945155


Abstract
Transient receptor potential channels (TRPs) regulate tumor growth via calcium-dependent mechanisms. The (thermosensitive) capsaicin receptor TRPV1 is overexpressed in numerous highly aggressive cancers. TRPV1 has potent antiproliferative activity and is therefore potentially applicable in targeted therapy of malignancies. Recently, we characterized TRPM8 functions in pancreatic neuroendocrine tumors (NETs), however, the role of TRPV1 is unknown. Here, we studied the expression and the role of TRPV1 in regulating intracellular Ca(2+) and chromogranin A (CgA) secretion in pancreatic NET BON-1 cell line and in primary NET cells (prNET). TRPV1 expression was detected by RT-PCR, Western blot and immunofluorescence. Intracellular free Ca(2+) ([Ca(2+)](i)) was measured by fura-2; TRPV1 channel currents by the planar patch-clamp technique. Nonselective cation currents were analyzed by a color-coded plot method and CgA secretion by ELISA. Pancreatic BON-1 cells and NETs express TRPV1. Pharmacological blockade of TRPs by La(3+) (100 μM) or by ruthenium-red (RuR) or by capsazepine (CPZ) (both at 10 μM) suppressed the capsaicin (CAP)- or heat-stimulated increase of [Ca(2+)](i) in NET cells. CAP (20 μM) also increased nonselective cation channel currents in BON-1 cells. Furthermore, CAP (10 μM) stimulated CgA secretion, which was inhibited by CPZ or by RuR (both 10 μM). La(3+) potently reduced both stimulated and the basal CgA secretion. Our study shows for the first time that TRPV1 is expressed in pancreatic NETs. Activation of TRPV1 translates into changes of intracellular Ca(2+), a known mechanism triggering the secretion of CgA. The clinical relevance of TRPV1 activation in NETs requires further investigations.