PubMed 21512308
Referenced in: none
Automatically associated channels: Slo1
Title: Inhibition of ATP-sensitive K+ channels and L-type Ca2+ channels by amiodarone elicits contradictory effect on insulin secretion in MIN6 cells.
Authors: Atsushi Nishida, Taichi Takizawa, Akio Matsumoto, Takashi Miki, Susumu Seino, Haruaki Nakaya
Journal, date & volume: J. Pharmacol. Sci., 2011 , 116, 73-80
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/21512308
Abstract
Some class I antiarrhythmic drugs induce a sporadic hypoglycemia by producing insulin secretion via inhibition of ATP-sensitive K(+) (K(ATP)) channels of pancreatic β-cells. It remains undetermined whether amiodarone produces insulin secretion by inhibiting K(ATP) channels. In this study, effects of amiodarone on K(ATP) channels, L-type Ca(2+) channel, membrane potential, and insulin secretion were examined and compared with those of quinidine in a β-cell line (MIN6). Amiodarone as well as quinidine inhibited the openings of the K(ATP) channel in a concentration-dependent manner without affecting its unitary amplitude in inside-out membrane patches of single MIN6 cells, and the IC(50) values were 0.24 and 4.9 µM, respectively. The L-type Ca(2+) current was also inhibited by amiodarone as well as quinidine in a concentration-dependent manner. Although glibenclamide (0.1 µM) or quinidine (10 µM) significantly potentiated the insulin secretion from MIN6 cells, amiodarone (1-30 µM) failed to increase insulin secretion. Amiodarone (30 µM) and nifedipine (10 µM) significantly inhibited the increase in insulin secretion produced by 0.1 µM glibenclamide. Amiodarone (30 µM) produced a gradual decrease of the membrane potential, but did not produce repetitive electrical activity in MIN6 cells. Glibenclamide (1 µM) produced a slow depolarization, followed by spiking activity which was inhibited by 30 µM amiodarone. Thus, amiodarone is unlikely to produce hypoglycemia in spite of potent inhibitory action on K(ATP) channels in insulin-secreting cells, possibly due to its Ca(2+) channel-blocking action.