PubMed 21489690
Referenced in: none
Automatically associated channels: TRP , TRPA , TRPA1 , TRPM , TRPM8 , TRPV , TRPV1
Title: A novel role for TRPM8 in visceral afferent function.
Authors: Andrea M Harrington, Patrick A Hughes, Christopher M Martin, Jing Yang, Joel Castro, Nicole J Isaacs, L Ashley Blackshaw, Stuart M Brierley
Journal, date & volume: , 2011 Apr 11 , ,
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/21489690
Abstract
Transient receptor potential ion channel melastatin subtype 8 (TRPM8) is activated by cold temperatures and cooling agents, such as menthol and icilin. Compounds containing peppermint are reported to reduce symptoms of bowel hypersensitivity; however, the underlying mechanisms of action are unclear. Here we determined the role of TRPM8 in colonic sensory pathways. Laser capture microdissection, quantitative reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and retrograde tracing were used to localise TRPM8 to colonic primary afferent neurons. In vitro extracellular single-fibre afferent recordings were used to determine the effect of TRPM8 channel activation on the chemosensory and mechanosensory function of colonic high-threshold afferent fibres. TRPM8 mRNA was present in colonic DRG neurons, whereas TRPM8 protein was present on nerve fibres throughout the wall of the colon. A subpopulation (24%, n=58) of splanchnic serosal and mesenteric afferents tested responded directly to icilin (5 μmol/L). Subsequently, icilin significantly desensitised afferents to mechanical stimulation (P<.0001; n=37). Of the splanchnic afferents responding to icilin, 21 (33%) also responded directly to the TRPV1 agonist capsaicin (3 μmol/L), and icilin reduced the direct chemosensory response to capsaicin. Icilin also prevented mechanosensory desensitization and sensitization induced by capsaicin and the TRPA1 agonist AITC (40 μmol/L), respectively. TRPM8 is present on a select population of colonic high threshold sensory neurons, which may also co-express TRPV1. TRPM8 couples to TRPV1 and TRPA1 to inhibit their downstream chemosensory and mechanosensory actions.