PubMed 7996555
Referenced in: none
Automatically associated channels: Kv10.1 , Slo1
Title: Bis-catechol-substituted redox-reactive analogues of hexamethonium and decamethonium: stimulated affinity-dependent reactivity through iron peroxide catalysis.
Authors: Y Gu, H Lee, R A Hudson
Journal, date & volume: J. Med. Chem., 1994 Dec 9 , 37, 4417-20
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/7996555
Abstract
Symmetrically bis-catechol-substituted analogues (1 and 2, respectively) of hexamethonium and decamethonium were synthesized and investigated as redox-activated affinity reagents toward the neurotoxin-binding sites of the nicotinic acetylcholine receptor (nAcChR), purified from Torpedo californica electroplax. These reagents bound to nAcChR with Kd = 1.8 x 10(-8) and 2.3 x 10(-7) M for 1 and 2, respectively. In the presence of a metal, Fe(II)/Fe(III), and peroxide, both reagents produced a rapid and efficient half-of-sites inactivation of neurotoxin-binding sites in the nAcChR in a concentration-dependent manner, which paralleled the extent of receptor binding of the reagents. In the absence of Fe(II)/Fe(III) peroxide, redox-dependent inactivation occurred for both 1 and 2 more slowly and only at concentrations much higher (10(3)-10(4) times) than those necessary to produce significant binding to nAcChR. However, receptor inactivation in the absence of added metal peroxide was still more efficient for 1 and 2 than observed previously for [(trimethylammonio)methyl]catechol (3), the prototypic redox-dependent affinity reagent after which 1 and 2 were patterned. Thus, the new reagents reported are expected to provide more efficient and selective conditions for redox-dependent inactivation at nAcChR and other macromolecular sites to which such reagents may be directed.