PubMed 15860525
Referenced in: none
Automatically associated channels: ClC4
Title: Role of chloride channels in bradykinin-induced guinea pig airway vagal C-fibre activation.
Authors: Min-Goo Lee, Donald W MacGlashan, Bradley J Undem
Journal, date & volume: J. Physiol. (Lond.), 2005 Jul 1 , 566, 205-12
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/15860525
Abstract
We tested the hypothesis that an ionic current carried by chloride ions contributes to bradykinin (BK)-induced membrane depolarization and activation of vagal afferent C-fibres. In an ex vivo innervated trachea/bronchus preparation, BK (1 microM) consistently produced action potential discharge in vagal afferent C-fibres with receptive fields in the trachea or main stem bronchus. The Ca2+-activated Cl- channel (CLCA) inhibitor, niflumic acid (NFA, 100 microM), significantly reduced BK-induced action potential discharge to 21 +/- 7% of the control BK response. NFA did not inhibit capsaicin-induced or citric-acid-induced action potential discharge in tracheal C-fibres. The inhibitory effect of NFA was mimicked by another CLCA inhibitor, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB, 100 microM). NFA also inhibited the BK-induced inward current in gramicidin-perforated whole-cell patch-clamp recordings of capsaicin-sensitive jugular ganglion neurones retrogradely labelled from the airways. NFA did not inhibit the BK-induced increase in intracellular free Ca2+. The TRPV1 inhibitor, iodo-resiniferatoxin (1 microM), also partially inhibited BK-induced action potential discharge, and the combination of iodo-resiniferatoxin and NFA virtually abolished the BK-induced action potential discharge. We concluded that in vagal afferent C-fibres, BK evokes membrane depolarization and action potential discharge through the additive effects of TRPV1 and Cl- channel activation.