Channelpedia

PubMed 16443692


Referenced in: none

Automatically associated channels: Cav3.2



Title: Short- and long-term amiodarone treatments regulate Cav3.2 low-voltage-activated T-type Ca2+ channel through distinct mechanisms.

Authors: Noboru Yamashita, Toshihiko Kaku, Tomoko Uchino, Shojiro Isomoto, Hironobu Yoshimatsu, Katsushige Ono

Journal, date & volume: Mol. Pharmacol., 2006 May , 69, 1684-91

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/16443692


Abstract
Low-voltage-activated T-type Ca2+ channels have been recognized recently in the mechanisms underlying atrial arrhythmias. However, the pharmacological effects of amiodarone on the T-type Ca2+ channel remain unclear. We investigated short- and long-term effects of amiodarone on the T-type (Cav 3.2) Ca2+ channel. The Cav3.2 alpha1H subunit derived from human heart was stably transfected into cells [human embryonic kidney (HEK)-Cav3.2] cultured with or without 5 muM amiodarone. Patch-clamp recordings in the conventional whole-cell configuration were used to evaluate the actions of amiodarone on the T-type Ca2+ channel current (ICa.T). Amiodarone blockade of ICa.T occurred in a dose- and holding potential-dependent manner, shifting the activation and the steady-state inactivation curves in the hyperpolarization direction, when amiodarone was applied immediately to the bath solution. However, when the HEK-Cav3.2 cells were incubated with 5 microM amiodarone for 72 h, ICa.T density was significantly decreased by 31.7+/-2.3% for control,-93.1+/-4.3 pA/pF (n=8), versus amiodarone,-56.5+/-3.2 pA/pF (n=13), P<0.001. After the prolonged administration of amiodarone, the activation and the steady-state inactivation curves were shifted in the depolarization direction by -7.1 (n=41) and -5.5 mV (n=37), respectively, and current inactivation was significantly delayed [time constant (tau): control, 13.3+/-1.1 ms (n=6) versus amiodarone, 39.6+/-5.5 ms (n=6) at -30 mV, P<0.001)]. Nevertheless, short-term inhibitory effects of amiodarone on the modified T-type Cav3.2 Ca2+ channel created by long-term amiodarone treatment were functionally maintained. We conclude that amiodarone exerts its short- and long-term inhibitory actions on ICa.T via distinct blocking mechanisms.