PubMed 16432503
Referenced in: none
Automatically associated channels: Kv10.1
Title: Cu2+ (1,10 phenanthroline)3 is an open-channel blocker of the human skeletal muscle sodium channel.
Authors: Mariana Oana Popa, Holger Lerche
Journal, date & volume: Br. J. Pharmacol., 2006 Apr , 147, 808-14
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/16432503
Abstract
The formation of disulfide bridges is a classical approach used to study the mobility, proximity and distances of residues in a variety of proteins, including ligand- and voltage-gated ion channels. We performed patch-clamp studies to investigate the interaction of a pair of cysteines introduced into the human skeletal muscle voltage-gated Na+ channel (hNa(v)1.4) using the oxidation catalyst, Cu2+ (1,10-phenanthroline)3 (CuPhen). Our experiments resulted in a surprising finding, a reversible current inhibition of the mutant I1160C/L1482C containing two cysteines in the D3/and D4/S4-S5 loops, subjected to oxidative cross-linking in the presence of CuPhen. We report here that CuPhen is an open channel blocker of both mutant and wild-type (WT) hNa(v)1.4 channels, however, for WT channels a more than 10-fold higher concentration was needed to induce the same effect. Moreover, 1,10-phenanthroline was capable of blocking Na+ channels in the absence of Cu2+ ions. Our results indicate a use- and voltage-dependent binding and unbinding of CuPhen, reminiscent of the lidocaine quaternary derivative QX-314 and the neurotoxin batrachotoxin. Care should be taken when using CuPhen as an oxidizing reagent in cross-linking experiments, since it may directly affect channel activity. Our results identify CuPhen (and phenantroline) as a novel use-dependent inhibitor of Na+ channels, a mechanism that is shared by drugs widely used in the treatment of epilepsy, neuropathic pain, cardiac arrhythmia and myotonia. We hypothesize that I1160C in D3/S4-S5 and the corresponding L1482C mutation in D4/S4-S5 could allosterically affect a binding site located in the inner pore region of the channel.