PubMed 15987767
Referenced in: none
Automatically associated channels: Kir6.2
Title: Role of ubiquitin-proteasome degradation pathway in biogenesis efficiency of {beta}-cell ATP-sensitive potassium channels.
Authors: Fei-Fei Yan, Chia-Wei Lin, Etienne A Cartier, Show-Ling Shyng
Journal, date & volume: Am. J. Physiol., Cell Physiol., 2005 Nov , 289, C1351-9
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/15987767
Abstract
ATP-sensitive potassium (K(ATP)) channels of pancreatic beta-cells mediate glucose-induced insulin secretion by linking glucose metabolism to membrane excitability. The number of plasma membrane K(ATP) channels determines the sensitivity of beta-cells to glucose stimulation. The K(ATP) channel is formed in the endoplasmic reticulum (ER) on coassembly of four inwardly rectifying potassium channel Kir6.2 subunits and four sulfonylurea receptor 1 (SUR1) subunits. Little is known about the cellular events that govern the channel's biogenesis efficiency and expression. Recent studies have implicated the ubiquitin-proteasome pathway in modulating surface expression of several ion channels. In this work, we investigated whether the ubiquitin-proteasome pathway plays a role in the biogenesis efficiency and surface expression of K(ATP) channels. We provide evidence that, when expressed in COS cells, both Kir6.2 and SUR1 undergo ER-associated degradation via the ubiquitin-proteasome system. Moreover, treatment of cells with proteasome inhibitors MG132 or lactacystin leads to increased surface expression of K(ATP) channels by increasing the efficiency of channel biogenesis. Importantly, inhibition of proteasome function in a pancreatic beta-cell line, INS-1, that express endogenous K(ATP) channels also results in increased channel number at the cell surface, as assessed by surface biotinylation and whole cell patch-clamp recordings. Our results support a role of the ubiquitin-proteasome pathway in the biogenesis efficiency and surface expression of beta-cell K(ATP) channels.