PubMed 20547678
Referenced in: none
Automatically associated channels: Kv11.1
Title: Cysteine 723 in the C-linker segment confers oxidative inhibition of hERG1 potassium channels.
Authors: Katrin Kolbe, Roland Schönherr, Guido Gessner, Nirakar Sahoo, Toshinori Hoshi, Stefan H Heinemann
Journal, date & volume: J. Physiol. (Lond.), 2010 Aug 15 , 588, 2999-3009
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20547678
Abstract
Excess reactive oxygen species (ROS) play a crucial role under pathophysiological conditions, such as ischaemia/reperfusion and diabetes, potentially contributing to cardiac arrhythmia. hERG1 (KCNH2) potassium channels terminate the cardiac action potential and malfunction can lead to long-QT syndrome and fatal arrhythmia. To investigate the molecular mechanisms of hERG1 channel alteration by ROS, hERG1 and mutants thereof were expressed in HEK293 cells and studied with the whole-cell patch-clamp method. Even mild ROS stress induced by hyperglycaemia markedly decreased channel current. Intracellular H2O2 or cysteine-specific modifiers also strongly inhibited channel activity and accelerated deactivation kinetics. Mutagenesis revealed that cysteine 723 (C723), a conserved residue in a structural element linking the C-terminal domain to the channel's gate, is critical for oxidative functional modification. Moreover, kinetics of channel closure strongly influences ROS-induced modification, where rapid channel deactivation diminishes ROS sensitivity. Because of its fast deactivation kinetics, the N-terminally truncated splice variant hERG1b possesses greater resistance to oxidative modification.