Channelpedia

PubMed 18693074


Referenced in: none

Automatically associated channels: HCN1



Title: Overexpression of HCN-encoded pacemaker current silences bioartificial pacemakers.

Authors: Deborah K Lieu, Yau Chi Chan, Chu Pak Lau, Hung Fat Tse, Chung Wah Siu, Ronald A Li

Journal, date & volume: Heart Rhythm, 2008 Sep , 5, 1310-7

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/18693074


Abstract
Current strategies of engineering bioartificial pacemakers from otherwise silent yet excitable adult atrial and ventricular cardiomyocytes primarily rely on either maximizing the hyperpolarization-activated I(f) or on minimizing its presumptive opponent, the inwardly rectifying potassium current I(K1).The purpose of this study was to determine quantitatively the relative current densities of I(f) and I(K1) necessary to induce automaticity in adult atrial cardiomyocytes.Automaticity of adult guinea pig atrial cardiomyocytes was induced by adenovirus (Ad)-mediated overexpression of the gating-engineered HCN1 construct HCN1-DeltaDeltaDelta with the S3-S4 linker residues EVY235-7 deleted to favor channel opening.Whereas control atrial cardiomyocytes remained electrically quiescent and had no I(f), 18% of Ad-CMV-GFP-IRES-HCN1-DeltaDeltaDelta (Ad-CGI-HCN1-DeltaDeltaDelta)-transduced cells demonstrated automaticity (240 +/- 14 bpm) with gradual phase 4 depolarization (143 +/- 28 mV/s), a depolarized maximal diastolic potential (-45.3 +/- 2.2 mV), and substantial I(f) at -140 mV (I(f,-140 mV) = -9.32 +/- 1.84 pA/pF). In the remaining quiescent Ad-CGI-HCN1-DeltaDeltaDelta-transduced atrial cardiomyocytes, two distinct immediate phenotypes were observed: (1) 13% had a hyperpolarized resting membrane potential (-56.7 +/- 1.3 mV) with I(f,-140 mV) of -4.85 +/- 0.97 pA/pF; and (2) the remaining 69% displayed a depolarized resting membrane potential (-27.6 +/- 1.3 mV) with I(f,-140 mV) of -23.0 +/- 3.71 pA/pF. Upon electrical stimulation, both quiescent groups elicited a single action potential with incomplete phase 4 depolarization that was never seen in controls. Further electrophysiologic analysis indicates that an intricate balance of I(K1) and I(f) is necessary for induction of atrial automaticity.Optimized pacing induction and modulation can be better achieved by engineering the I(f)/I(K1) ratio rather than the individual currents.