PubMed 19463897
Referenced in: none
Automatically associated channels: Slo1
Title: The facilitating effect of systemic administration of Kv7/M channel blocker XE991 on LTP induction in the hippocampal CA1 area independent of muscarinic activation.
Authors: Ming-Ke Song, Yong-Yao Cui, Wei-Wei Zhang, Liang Zhu, Yang Lu, Hong-Zhuan Chen
Journal, date & volume: Neurosci. Lett., 2009 Sep 11 , 461, 25-9
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/19463897
Abstract
A large amount of in vitro studies demonstrate suppression of M-current in hippocampal neurons by Kv7/M channel blocker results in depolarization of membrane potential and release of neurotransmitters, such as acetylcholine and glutamate, suggesting that Kv7/M channel may play important roles in regulating synaptic plasticity. In the present study, we examined the in vivo effect of Kv7/M channel inhibition on the long-term potentiation (LTP) induction at basal dendrites in hippocampal CA1 area of urethane-anaesthetized rats. The Kv7/M channel was inhibited by intraperitoneal injection of XE991 (10mg/kg) and the LTP of field excitatory postsynaptic potential (fEPSP) was induced by supra-threshold high frequency stimulation (S1 HFS). A weak protocol which was just below the threshold for evoking LTP was used as sub-threshold high frequency stimulation (S2 HFS). XE991 did not significantly alter the slope of fEPSP and the magnitude of LTP induced by S1 HFS, suggesting that Kv7/M channel inhibition had little or no effect on glutamatergic transmission under basal conditions. However, XE991 could make S2 HFS evoke LTP even after the application of the muscarinic cholinergic (mACh) receptor antagonist scopolamine, suggesting that Kv7/M channel inhibition lowered the threshold for LTP induction and the effect was independent of muscarinic activation. Based on the above findings, we concluded that the facilitating effect of XE991 on LTP induction is not mediated by its ability to enhance the release of acetylcholine; therefore, Kv7/M channel blockers may provide a therapeutic benefit to cholinergic deficiency-related cognitive impairment, e.g., Alzheimer's disease.