PubMed 19457106
Referenced in: none
Automatically associated channels: Slo1
Title: Dominant role of lipid rafts L-type calcium channel in activity-dependent potentiation of large dense-core vesicle exocytosis.
Authors: Yongsoo Park, Kyong-Tai Kim
Journal, date & volume: J. Neurochem., 2009 Jul , 110, 520-9
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/19457106
Abstract
Calcium influx triggers exocytosis by promoting vesicle fusion with the plasma membrane. However, different subtypes of voltage-gated calcium channel (VGCC) have distinct roles in exocytosis. We previously reported that repetitive stimulation induces activity-dependent potentiation (ADP) which represents the increase of neurotransmitter release. Here, we show that L-type VGCC have a dominant role in ADP of large dense-core vesicle (LDCV) exocytosis. Repetitive stimulation activating VGCC can induce ADP, whereas activation of bradykinin (BK) G protein-coupled receptors or purinergic P2X cation channels can not. L-type VGCC has the dominant role in ADP of LDCV exocytosis by regulating Protein Kinase C (PKC)-epsilon translocation and phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS), a target molecule of PKC-epsilon. We provide evidence that L-type VGCC, PKC-epsilon, and MARCKS, but not Q-type VGCC, are selectively located in lipid rafts. Also, PKC-epsilon translocation induced by L-type VGCC activation occurs in lipid rafts. Disruption of lipid rafts abolishes ADP of LDCV exocytosis and changes the fusion pore kinetics without affecting the first stimulation-induced exocytosis, showing that lipid rafts are involved in the potentiation process. Taken together, we suggest that L-type VGCC in lipid rafts selectively mediates ADP of LDCV exocytosis by regulating PKC-epsilon translocation and MARCKS phosphorylation.