PubMed 1254585
Referenced in: none
Automatically associated channels: Kv10.1
Title: Partial puridication of a membrane protein from human erythrocytes involved in glucose transport.
Authors: A Kahlenberg
Journal, date & volume: J. Biol. Chem., 1976 Mar 25 , 251, 1582-90
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/1254585
Abstract
In an attempt to determine which membrane proteins are essential to the stereospecific uptake of D-glucose, isolated human erythrocyte membranes were exposed to a variety of reagents capable of selectively extracting various membrane proteins. These reagents included EDTA, lithium 3,5-diiodosalicylate, sodium iodide, and 2,3-dimethylmaleic anhydride. Selective elution of spectrin and Components 2.1, 2.2, 2.3, 4.1, 4.2, 5, and 6 representing 65% of the ghost protein has no effect on the uptake of D-glucose. All of the sugar transport proteins are associated with a membrane residue consisting of the proteins of Bands 3, 4.5, and 7, the periodic acid-Schiff-sensitive glycoproteins, and ghost phospholipids. Specific cross-linking of the proteins of Band 3 of ghosts by the catalyzed oxidation of intrinsic sulfhydryl groups with the o-phenanthroline-cupric ion complex inhibits D-glucose uptake and alters the relative electrophoretic mobility of Band 3 proteins in sodium dodecyl sulfate-polyacrylamide-agarose gels. This uptake activity and the relative mobility of Band 3 proteins are recovered upon reversal of the cross-linking reaction by reduction with 2-mercaptoethanol. These results and other observations indicate that the D-glucose transport protein is an intrinsic component of the hydrophobic structure of the erythrocyte membrane and may be associated with the proteins of Band 3 which are glycoproteins spanning the membrane bilayer. It is proposed that D-glucose transport occurs through a water-filled channel formed by specific subunit aggregates of the transport proteins in the erythrocyte membrane rather than by rotation of the protein within the plane of the membrane.