Channelpedia

PubMed 3699027


Referenced in: none

Automatically associated channels: Kv2.1



Title: Two acceptor sub-types for dendrotoxin in chick synaptic membranes distinguishable by beta-bungarotoxin.

Authors: A R Black, J O Dolly

Journal, date & volume: Eur. J. Biochem., 1986 May 2 , 156, 609-17

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/3699027


Abstract
Using chick synaptic membranes, proteinaceous acceptors were characterized for dendrotoxin, a polypeptide from Dendroaspis angusticeps with convulsant activity due to its facilitation of transmitter release, resulting from inhibition of A-current K+ channels in brain. Both equilibrium and kinetic measurements of radioiodinated toxin binding showed that two populations of membraneous acceptors were discernible with different affinities (Kd approximately 0.5 nM and 15 nM; Bmax approximately 90 and 400 fmol/mg protein). Only the high-affinity component interacted avidly with beta-bungarotoxin, an inhibitory presynaptic neurotoxin whose lighter chain is homologous to dendrotoxin. Facilitatory homologues of dendrotoxin from Dendroaspis species antagonised its binding to both acceptor sub-types in proportion to their central neurotoxicities, whereas various other toxins (crotoxin, apamin), trypsin inhibitors and lectins proved ineffective. Cross-linking of toxin specifically bound to its membrane acceptors, using bis-imido esters followed by electrophoretic analysis in the presence of sodium dodecyl sulphate, revealed a polypeptide with Mr of 75,000 together with lesser amounts of a 69,000-Mr component. Notably, the covalent labelling of each of these bands was inhibited partially by low concentrations of beta-bungarotoxin, indicating that they are derived from both acceptor species. The demonstrated existence of an acceptor form shared by dendrotoxin and beta-bungarotoxin, together with another sub-type selective for dendrotoxin, is discussed in relation to the known pharmacological interactions of these toxins which exert opposite effects on transmitter release.