Channelpedia

PubMed 17567805


Referenced in: none

Automatically associated channels: Kir6.2



Title: Persistence of Ca(v)1.3 Ca2+ channels in mature outer hair cells supports outer hair cell afferent signaling.

Authors: Martina Knirsch, Niels Brandt, Claudia Braig, Stephanie Kuhn, Bernhard Hirt, Stefan Münkner, Marlies Knipper, Jutta Engel

Journal, date & volume: J. Neurosci., 2007 Jun 13 , 27, 6442-51

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/17567805


Abstract
Outer hair cells (OHCs) are innervated by type II afferent fibers of as yet unknown function. It is still a matter of debate whether OHCs perform exocytosis. If so, they would require presynaptic Ca2+ channels at their basal poles where the type II fibers make contacts. Here we show that L-type Ca2+ channel currents (charge carrier, 10 mM Ba2+) present in neonatal OHCs [postnatal day 1 (P1) to P7] decreased from approximately 170 to approximately 50 pA at approximately the onset of hearing. Ba2+ currents could hardly be measured in mature mouse OHCs because of their high fragility, whereas in the rat, the average Ba2+ current amplitude of apical OHCs was 58 +/- 9 pA (n = 20, P19-P30) compared with that of the inner hair cells (IHCs) of 181 +/- 50 pA (n = 24, P17-P30). Properties of Ba2+ currents of mature OHCs resembled those of neonatal OHCs. One exception was the voltage dependence of activation that shifted between birth and P12 by +9 mV toward positive voltages in OHCs, whereas it remained constant in the IHCs. Ca(v)1.3-specific mRNA was detected in mature OHCs using cell-specific reverse transcription (RT)-PCR and in situ hybridization. Ca(v)1.3 protein was stained exclusively at the base of mature OHCs, in colocalization with the ribbon synapse protein CtBP2 (C-terminal binding protein 2)/RIBEYE. When current sizes were normalized to the estimated number of afferent fibers or presynaptic ribbons, comparable values for IHCs and OHCs were obtained, a finding that together with the colocalization of Ca(v)1.3 and CtBP2/RIBEYE protein strongly suggests a role for Ca(v)1.3 channels in exocytosis of mature OHCs.