Channelpedia

PubMed 1706431


Referenced in: none

Automatically associated channels: Kv2.1



Title: 9-methyl-7-bromoeudistomin D, a powerful radio-labelable Ca++ releaser having caffeine-like properties, acts on Ca(++)-induced Ca++ release channels of sarcoplasmic reticulum.

Authors: A Seino, M Kobayashi, J Kobayashi, Y I Fang, M Ishibashi, H Nakamura, K Momose, Y Ohizumi

Journal, date & volume: J. Pharmacol. Exp. Ther., 1991 Mar , 256, 861-7

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/1706431


Abstract
9-Methyl-7-bromoeudistomin D (MBED), a derivative of eudistomin D isolated from a marine tunicate, induced Ca++ release from the heavy fraction of fragmented sarcoplasmic reticulum (HSR) in the same way as that of caffeine, followed by spontaneous Ca++ reuptake in the Ca++ electrode experiment. The rate of 45Ca++ efflux from HSR vesicles was accelerated markedly by MBED or caffeine in a concentration-dependent manner. The 50% effective concentrations of MBED and caffeine were approximately 1 microM and 1 mM, respectively, indicating that MBED is 1000 times more potent than caffeine in HSR. Procaine, ruthenium red or Mg++ caused concentration-dependent inhibition of MBED-triggered Ca++ release from HSR. The bell-shaped profile of Ca++ dependence for MBED is very similar to that of caffeine. The caffeine-produced maximum response of 45Ca++ efflux was increased further by adenosine-5'-(beta, gamma-methyl-ene)triphosphate, whereas that was not changed by MBED. MBED also caused Ca++ release from sarcoplasmic reticulum (SR) of chemically skinned fibers. These stimulatory effects of MBED on the Ca++ release from skeletal muscle SR were almost indistinguishable from those of caffeine except the difference in potencies. The [3H]ryanodine binding to junctional terminal cisternae membranes was not inhibited by MBED or caffeine. MBED did not cause Ca++ release from the light fraction of fragmented SR and turbidity change of mitochondrial suspension. These observations suggest a most likely idea that MBED binds to the caffeine-binding site in the Ca channel protein and thus produces the potentiation of Ca(++)-induced Ca++ release from SR.(ABSTRACT TRUNCATED AT 250 WORDS)