PubMed 9351973
Title: Phosphorylation of the Kv2.1 K+ channel alters voltage-dependent activation.
Authors: H Murakoshi, G Shi, R H Scannevin, J S Trimmer
Journal, date & volume: Mol. Pharmacol., 1997 Nov , 52, 821-8
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/9351973
Abstract
The voltage-gated delayed-rectifier-type K+ channel Kv2.1 is expressed in high-density clusters on the soma and proximal dendrites of mammalian central neurons; thus, dynamic regulation of Kv2.1 would be predicted to have an impact on dendritic excitability. Rat brain Kv2.1 polypeptides are phosphorylated extensively, leading to a dramatically increased molecular mass on sodium dodecyl sulfate gels. Phosphoamino acid analysis of Kv2.1 expressed in transfected cells and labeled in vivo with 32P shows that phosphorylation was restricted to serine residues and that a truncation mutant, DeltaC318, which lacks the last 318 amino acids in the cytoplasmic carboxyl terminus, was phosphorylated to a much lesser degree than was wild-type Kv2.1. Whole-cell patch-clamp studies showed that the voltage-dependence of activation of DeltaC318 was shifted to more negative membrane potentials than Kv2.1 without differences in macroscopic kinetics; however, the differences in the voltage-dependence of activation between Kv2.1 and DeltaC318 were eliminated by in vivo intracellular application of alkaline phosphatase, suggesting that these differences were due to differential phosphorylation. Similar analyses of other truncation and point mutants indicated that the phosphorylation sites responsible for the observed differences in voltage-dependent activation lie between amino acids 667 and 853 near the distal end of the Kv2.1 carboxyl terminus. Together, these parallel biochemical and electrophysiological results provide direct evidence that the voltage-dependent activation of the delayed-rectifier K+ channel Kv2. 1 can be modulated by direct phosphorylation of the channel protein; such modulation of Kv2.1 could dynamically regulate dendritic excitability.