PubMed 26402606
Title: RIM-BPs Mediate Tight Coupling of Action Potentials to Ca(2+)-Triggered Neurotransmitter Release.
Authors: Claudio Acuna, Xinran Liu, Aneysis Gonzalez, Thomas C Südhof
Journal, date & volume: Neuron, 2015 Sep 23 , 87, 1234-47
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/26402606
Abstract
Ultrafast neurotransmitter release requires tight colocalization of voltage-gated Ca(2+) channels with primed, release-ready synaptic vesicles at the presynaptic active zone. RIM-binding proteins (RIM-BPs) are multidomain active zone proteins that bind to RIMs and to Ca(2+) channels. In Drosophila, deletion of RIM-BPs dramatically reduces neurotransmitter release, but little is known about RIM-BP function in mammalian synapses. Here, we generated double conditional knockout mice for RIM-BP1 and RIM-BP2, and analyzed RIM-BP-deficient synapses in cultured hippocampal neurons and the calyx of Held. Surprisingly, we find that in murine synapses, RIM-BPs are not essential for neurotransmitter release as such, but are selectively required for high-fidelity coupling of action potential-induced Ca(2+) influx to Ca(2+)-stimulated synaptic vesicle exocytosis. Deletion of RIM-BPs decelerated action-potential-triggered neurotransmitter release and rendered it unreliable, thereby impairing the fidelity of synaptic transmission. Thus, RIM-BPs ensure optimal organization of the machinery for fast release in mammalian synapses without being a central component of the machinery itself.