PubMed 10196543
Title: Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits.
Authors: W J Joiner, M D Tang, L Y Wang, S I Dworetzky, C G Boissard, L Gan, V K Gribkoff, L K Kaczmarek
Journal, date & volume: Nat. Neurosci., 1998 Oct , 1, 462-9
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/10196543
Abstract
Large-conductance calcium-activated potassium channels (maxi-K channels) have an essential role in the control of excitability and secretion. Only one gene Slo is known to encode maxi-K channels, which are sensitive to both membrane potential and intracellular calcium. We have isolated a potassium channel gene called Slack that is abundantly expressed in the nervous system. Slack channels rectify outwardly with a unitary conductance of about 25-65 pS and are inhibited by intracellular calcium. However, when Slack is co-expressed with Slo, channels with pharmacological properties and single-channel conductances that do not match either Slack or Slo are formed. The Slack/Slo channels have intermediate conductances of about 60-180 pS and are activated by cytoplasmic calcium. Our findings indicate that some intermediate-conductance channels in the nervous system may result from an interaction between Slack and Slo channel subunits.