PubMed 12890507
Title: Localization of KCNQ5 in the normal and epileptic human temporal neocortex and hippocampal formation.
Authors: E Yus-Nájera, A Muñoz, N Salvador, B S Jensen, H B Rasmussen, J Defelipe, A Villarroel
Journal, date & volume: Neuroscience, 2003 , 120, 353-64
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/12890507
Abstract
The KCNQ family of voltage-dependent non-inactivating K+ channels is composed of five members, four of which (KCNQ2-5) are expressed in the CNS and are responsible for the M-current. Mutations in either KCNQ2 or KCNQ3 lead to a hereditary form of dominant generalized epilepsy. Using specific antisera to the KCNQ2, KCNQ3 and KCNQ5 subunits, we found that KCNQ3 co-immunoprecipitated with KCNQ2 and KCNQ5 subunits, but no association was detected between KCNQ2 and KCNQ5. Intense KCNQ5 immunoreactivity was found to be widely distributed throughout the temporal neocortex and the hippocampal formation. In these structures, both pyramidal and non-pyramidal neurons and a population of glial cells in the white matter expressed the KCNQ5 subunit. In the sclerotic areas of the CA fields of epileptic patients, a marked loss of KCNQ5 immunoreactive pyramidal neurons was found in relation with the loss of neurons in these regions. However, in the regions adjacent to the sclerotic areas, the distribution and intensity of KCNQ5 immunostaining was apparently normal. The widespread distribution of KCNQ5 subunits, its persistence in pharmacoresistant epilepsy, along with the significant role of the M-current in the control of neuronal excitability, makes this protein a possible target for the development of anticonvulsant drugs.