Channelpedia

PubMed 10995738


Referenced in: none

Automatically associated channels: Kv7.1



Title: Contribution of the IsK (MinK) potassium channel subunit to regulatory volume decrease in murine tracheal epithelial cells.

Authors: H Lock, M A Valverde

Journal, date & volume: J. Biol. Chem., 2000 Nov 10 , 275, 34849-52

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/10995738


Abstract
The cell volume regulatory response following hypotonic shocks is often achieved by the coordinated activation of K(+) and Cl(-) channels. In this study, we investigate the identity of the K(+) and Cl(-) channels that mediate the regulatory volume decrease (RVD) in ciliated epithelial cells from murine trachea. RVD was inhibited by tamoxifen and 1,9-dideoxyforskolin, two agents that block swelling-activated Cl(-) channels. These data suggest that swelling-activated Cl(-) channels play an important role in cell volume regulation in murine tracheal epithelial cells. Ba(2+) and apamin, inhibitors of K(+) channels, were without effect on RVD, while tetraethylammoniun had little effect on RVD. In contrast, clofilium, an inhibitor of the KvLQT/IsK potassium channel complex potently inhibited RVD, suggesting a role for the KvLQT/IsK channel complex in cell volume regulation by tracheal epithelial cells. To investigate further the role of KvLQT/IsK channels in RVD, we used IsK knock-out mice. When exposed to hypotonic solutions, tracheal cells from IsK(+/+) mice underwent RVD, whereas cells from IsK(-/-) failed to recover their normal size. These data suggest that the IsK potassium subunit plays an important role in RVD in murine tracheal epithelial cells.