Channelpedia

PubMed 15691712


Referenced in: none

Automatically associated channels: SK3



Title: Assembly and trafficking of human small conductance Ca2+-activated K+ channel SK3 are governed by different molecular domains.

Authors: Renza Roncarati, Ilaria Decimo, Guido Fumagalli

Journal, date & volume: Mol. Cell. Neurosci., 2005 Feb , 28, 314-25

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/15691712


Abstract
Intracellular trafficking is an important event in the control of type and number of ion channels expressed on the cell surface. In this study, we have identified molecular domains involved in assembly and trafficking of the human small conductance Ca2+-activated K+ channel SK3. Deletion of the N-terminus, the C-terminus, or the calmodulin-binding domain (CaMBD) led to retention of SK3 channels in the endoplasmic reticulum. Presence of the CaMBD allowed trafficking to the Golgi complex, and sequences downstream were required for efficient transport to the plasma membrane, suggesting several steps in the control of SK3 forward trafficking. Co-immunoprecipitation studies demonstrated that SK3 subunits lacking the N-terminus, the CaMBD, or the distal C-terminus, but not the entire C-terminus, were able to oligomerize with wild-type SK3 subunits. Thus, these two C-terminal regions of SK3 seem to contribute to assembly and trafficking of channels whereas the N-terminus is necessary for trafficking but not sufficient for oligomerization.