Channelpedia

PubMed 24174660


Referenced in: none

Automatically associated channels: SK3 , TRP , TRPM , TRPM2 , TRPM7



Title: Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death.

Authors: Ishraq Alim, Lucy Teves, Rongwen Li, Yasuo Mori, Michael Tymianski

Journal, date & volume: J. Neurosci., 2013 Oct 30 , 33, 17264-77

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/24174660


Abstract
Neuronal vulnerability to ischemia is dependent on the balance between prosurvival and prodeath cellular signaling. In the latter, it is increasingly appreciated that toxic Ca(2+) influx can occur not only via postsynaptic glutamate receptors, but also through other cation conductances. One such conductance, the Transient receptor potential melastatin type-2 (TRPM2) channel, is a nonspecific cation channel having homology to TRPM7, a conductance reported to play a key role in anoxic neuronal death. The role of TRPM2 conductances in ischemic Ca(2+) influx has been difficult to study because of the lack of specific modulators. Here we used TRPM2-null mice (TRPM2(-/-)) to study how TRPM2 may modulate neuronal vulnerability to ischemia. TRPM2(-/-) mice subjected to transient middle cerebral artery occlusion exhibited smaller infarcts when compared with wild-type animals, suggesting that the absence of TRPM2 is neuroprotective. Surprisingly, field potentials (fEPSPs) recorded during redox modulation in brain slices taken from TRPM2(-/-) mice revealed increased excitability, a phenomenon normally associated with ischemic vulnerability, whereas wild-type fEPSPs were unaffected. The upregulation in fEPSP in TRPM2(-/-) neurons was blocked selectively by a GluN2A antagonist. This increase in excitability of TRPM2(-/-) fEPSPs during redox modulation depended on the upregulation and downregulation of GluN2A- and GluN2B-containing NMDARs, respectively, and on augmented prosurvival signaling via Akt and ERK pathways culminating in the inhibition of the proapoptotic factor GSK3β. Our results suggest that TRPM2 plays a role in downregulating prosurvival signals in central neurons and that TRPM2 channels may comprise a therapeutic target for preventing ischemic damage.