Channelpedia

PubMed 24296650


Referenced in: none

Automatically associated channels: SK3 , Slo1



Title: Overexpression of KCNN3 results in sudden cardiac death.

Authors: Saagar Mahida, Robert W Mills, Nathan R Tucker, Bridget Simonson, Vincenzo Macri, Marc D Lemoine, Saumya Das, David J Milan, Patrick T Ellinor

Journal, date & volume: Cardiovasc. Res., 2014 Feb 1 , 101, 326-34

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/24296650


Abstract
A recent genome-wide association study identified a susceptibility locus for atrial fibrillation at the KCNN3 gene. Since the KCNN3 gene encodes for a small conductance calcium-activated potassium channel, we hypothesized that overexpression of the SK3 channel increases susceptibility to cardiac arrhythmias.We characterized the cardiac electrophysiological phenotype of a mouse line with overexpression of the SK3 channel. We generated homozygote (SK3(T/T)) and heterozygote (SK3(+/T)) mice with overexpression of the channel and compared them with wild-type (WT) controls. We observed a high incidence of sudden death among SK3(T/T) mice (7 of 19 SK3(T/T) mice). Ambulatory monitoring demonstrated that sudden death was due to heart block and bradyarrhythmias. SK3(T/T) mice displayed normal body weight, temperature, and cardiac function on echocardiography; however, histological analysis demonstrated that these mice have abnormal atrioventricular node morphology. Optical mapping demonstrated that SK3(T/T) mice have slower ventricular conduction compared with WT controls (SK3(T/T) vs. WT; 0.45 ± 0.04 vs. 0.60 ± 0.09 mm/ms, P = 0.001). Programmed stimulation in 1-month-old SK3(T/T) mice demonstrated inducible atrial arrhythmias (50% of SK3(T/T) vs. 0% of WT mice) and also a shorter atrioventricular nodal refractory period (SK3(T/T) vs. WT; 43 ± 6 vs. 52 ± 9 ms, P = 0.02). Three-month-old SK3(T/T) mice on the other hand displayed a trend towards a more prolonged atrioventricular nodal refractory period (SK3(T/T) vs. WT; 61 ± 1 vs. 52 ± 6 ms, P = 0.06).Overexpression of the SK3 channel causes an increased risk of sudden death associated with bradyarrhythmias and heart block, possibly due to atrioventricular nodal dysfunction.