Channelpedia

PubMed 23844512


Referenced in: none

Automatically associated channels: Kir1.1 , Kv1.6 , Kv7.2 , Kv7.4 , Nav1.6 , Slo1



Title: [To the mechanisms of antiarrhythmic action of Allapinine].

Authors:

Journal, date & volume: Bioorg. Khim., 2013 Jan-Feb , 39, 105-16

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/23844512


Abstract
Allapinine (lappaconitine hydrobromide) is a drug for the treatment of cardiac arrhythmias, it shows IC class antiarrhythmics properties. Its action mechanism is associated with blockade of Na(+)-channels with subsequent inhibition of the depolarization rate and, consequently, of the slowing and reducing the excitability of the cardiac conduction system. At the moment, it is not established, what factors are associated with side effects of Allapinine, and therefore it seems important to study the molecular mechanisms of its action. The target genes were identified in a rat model of aconitine-induced arrhythmia using a commercial kit "Rat Neuroscience Ion Channels & Transporters RT2 Profiler PCR Array" (SABioscienses). Comparison of the expression of 84 genes in the experimental (aconitine arrhythmias/Allapinine) and control (aconitine arrhythmias/saline) animals revealed changes in the mRNA level of 18 genes. It has been shown an increase in mRNA levels of genes encoding various types of K(+)-channels (kcna6, kcnj1, kcnj4, kcnq2, kcnq4), Ca(2+)-channel (cacna 1g), vesicular acetylcholine transporter (slc 18a3). Decrease in the mRNA level was observed for genes encoding the Na(+)-channel (scn8a), K(+)-channels (kcne 1, kcns 1), membrane transporters (atp4a, slc6a9). Taken together, it appears that the effect of Allapinine on aconitine--induced arrhythmias is due to modulation of genes encoding Na(+)-, K(+)-, Ca(2+)-channels, conducting ionic currents (I(Na), I(to), I(Ks), I(K1), I(CaT)), which are involved in the formation of different phases of the action potential. The effect of the drug on the mRNA levels of genes encoding the acetylcholine and glycine transporters, suggesting the participation of these neurotransmitters in the mechanisms of anti-arrhythmic properties of the Allapinine.