Channelpedia

PubMed 21454249


Referenced in: none

Automatically associated channels: BKβ



Title: Coupled ATP and potassium efflux from intercalated cells.

Authors: J David Holtzclaw, Ryan J Cornelius, Lori I Hatcher, Steven C Sansom

Journal, date & volume: Am. J. Physiol. Renal Physiol., 2011 Jun , 300, F1319-26

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/21454249


Abstract
Increased flow in the distal nephron induces K secretion through the large-conductance, calcium-activated K channel (BK), which is primarily expressed in intercalated cells (IC). Since flow also increases ATP release from IC, we hypothesized that purinergic signaling has a role in shear stress (τ; 10 dynes/cm(2)) -induced, BK-dependent, K efflux. We found that 10 μM ATP led to increased IC Ca concentration, which was significantly reduced in the presence of the P(2) receptor blocker suramin or calcium-free buffer. ATP also produced BK-dependent K efflux, and IC volume decrease. Suramin inhibited τ-induced K efflux, suggesting that K efflux is at least partially dependent on purinergic signaling. BK-β4 small interfering (si) RNA, but not nontarget siRNA, decreased ATP secretion and both ATP-dependent and τ-induced K efflux. Similarly, carbenoxolone (25 μM), which blocks connexins, putative ATP pathways, blocked τ-induced K efflux and ATP secretion. Compared with BK-β4(-/-) mice, wild-type mice with high distal flows exhibited significantly more urinary ATP excretion. These data demonstrate coupled electrochemical efflux between K and ATP as part of the mechanism for τ-induced ATP release in IC.