Channelpedia

PubMed 16478442


Referenced in: none

Automatically associated channels: Kv2.1 , Slo1



Title: Modulation of Kv2.1 channel gating and TEA sensitivity by distinct domains of SNAP-25.

Authors: Yan He, Youhou Kang, Yuk-Man Leung, Fuzhen Xia, Xiaodong Gao, Huanli Xie, Herbert Y Gaisano, Robert G Tsushima

Journal, date & volume: Biochem. J., 2006 Jun 1 , 396, 363-9

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/16478442


Abstract
Distinct domains within the SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) proteins, STX1A (syntaxin 1A) and SNAP-25 (synaptosome-associated protein-25 kDa), regulate hormone secretion by their actions on the cell's exocytotic machinery, as well as voltage-gated Ca2+ and K+ channels. We examined the action of distinct domains within SNAP-25 on Kv2.1 (voltage gated K+ 2.1) channel gating. Dialysis of N-terminal SNAP-25 domains, S197 (SNAP-25(1-197)) and S180 (SNAP-25(1-180)), but not S206 (full-length SNAP-25(1-206)) increased the rate of Kv2.1 channel activation and slowed channel inactivation. Remarkably, these N-terminal SNAP-25 domains, acting on the Kv2.1 cytoplasmic N-terminus, potentiated the external TEA (tetraethylammonium)-mediated block of Kv2.1. To further examine whether these are effects of the channel pore domain, internal K+ was replaced with Na+ and external K+ was decreased from 4 to 1 mM, which decreased the IC50 of the TEA block from 6.8+/-0.9 mM to >100 mM. Under these conditions S180 completely restored TEA sensitivity (7.9+/-1.5 mM). SNAP-25 C-terminal domains, SNAP-25(198-206) and SNAP-25(181-197), had no effect on Kv2.1 gating kinetics. We conclude that different domains within SNAP-25 can form distinct complexes with Kv2.1 to execute a fine allosteric regulation of channel gating and the architecture of the outer pore structure in order to modulate cell excitability.