Channelpedia

PubMed 16251435


Referenced in: none

Automatically associated channels: Cav1.2



Title: Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory.

Authors: Sven Moosmang, Nicole Haider, Norbert Klugbauer, Helmuth Adelsberger, Nicolas Langwieser, Jochen Müller, Michael Stiess, Else Marais, Verena Schulla, Lubica Lacinova, Sandra Goebbels, Klaus-Armin Nave, Daniel R Storm, Franz Hofmann, Thomas Kleppisch

Journal, date & volume: J. Neurosci., 2005 Oct 26 , 25, 9883-92

PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/16251435


Abstract
Current knowledge about the molecular mechanisms of NMDA receptor (NMDAR)-independent long-term potentiation (LTP) in the hippocampus and its function for memory formation in the behaving animal is limited. NMDAR-independent LTP in the CA1 region is thought to require activity of postsynaptic L-type voltage-dependent Ca2+ channels (Cav1.x), but the underlying channel isoform remains unknown. We evaluated the function of the Cav1.2 L-type Ca2+ channel for spatial learning, synaptic plasticity, and triggering of learning-associated biochemical processes using a mouse line with an inactivation of the CACNA1C (Cav1.2) gene in the hippocampus and neocortex (Cav1.2(HCKO)). This model shows (1) a selective loss of protein synthesis-dependent NMDAR-independent Schaffer collateral/CA1 late-phase LTP (L-LTP), (2) a severe impairment of hippocampus-dependent spatial memory, and (3) decreased activation of the mitogen-activated protein kinase (MAPK) pathway and reduced cAMP response element (CRE)-dependent transcription in CA1 pyramidal neurons. Our results provide strong evidence for a role of L-type Ca2+ channel-dependent, NMDAR-independent hippocampal L-LTP in the formation of spatial memory in the behaving animal and for a function of the MAPK/CREB (CRE-binding protein) signaling cascade in linking Cav1.2 channel-mediated Ca2+ influx to either process.