User Visitor Login
English only
EPFL > FSV > BBP > Channelpedia
Ion channels
Logged in as a Visitor.

Expression of Ca(2+) channel subunits during cardiac ontogeny in mice and rats: identification of fetal alpha(1C) and beta subunit isoforms.

H Haase, B Pfitzmaier, M W McEnery, I Morano

J. Cell. Biochem., 2000 Jan , 76, 695-703

Functional cardiac L-type calcium channels are composed of the pore-forming alpha(1C) subunit and the regulatory beta(2) and alpha(2)/delta subunits. To investigate possible developmental changes in calcium channel composition, we examined the temporal expression pattern of alpha(1C) and beta(2) subunits during cardiac ontogeny in mice and rats, using sequence-specific antibodies. Fetal and neonatal hearts showed two size forms of alpha(1C) with 250 and 220 kDa. Quantitative immunoblotting revealed that the rat cardiac 250-kDa alpha(1C) subunit increased about 10-fold from fetal days 12-20 and declined during postnatal maturation, while the 220-kDa alpha(1C) decreased to undetectable levels. The expression profile of the 85-kDa beta(2) subunit was completely different: beta(2) was not detected at fetal day 12, rose in the neonatal stage, and persisted during maturation. Additional beta(2)-stained bands of 100 and 90 kDa were detected in fetal and newborn hearts, suggesting the transient expression of beta(2) subunit variants. Furthermore, two fetal proteins with beta(4) immunoreactivity were identified in rat hearts that declined during prenatal development. In the fetal rat heart, beta(4) gene expression was confirmed by RT-PCR. Cardiac and brain beta(4) mRNA shared the 3 prime region, predicting identical primary sequences between amino acid residues 62-519, diverging however, at the 5 prime portion. The data indicate differential developmental changes in the expression of Ca(2+) channel subunits and suggest a role of fetal alpha(1C) and beta isoforms in the assembly of Ca(2+) channels in immature cardiomyocytes.