PubMed 12114190

Title: Inhibition of inwardly rectifying K(+) channels by cGMP in pulmonary vascular endothelial cells.

Authors: Larissa A Shimoda, Laura E Welsh, David B Pearse

Journal, date & volume: Am. J. Physiol. Lung Cell Mol. Physiol., 2002 Aug , 283, L297-304

PubMed link:

Endothelial barrier dysfunction is typically triggered by increased intracellular Ca(2+) concentration. Membrane-permeable analogs of guanosine 3',5'-cyclic monophosphate (cGMP) prevent disruption of endothelial cell integrity. Because membrane potential (E(m)), which influences the electrochemical gradient for Ca(2+) influx, is regulated by K(+) channels, we investigated the effect of 8-bromo-cGMP on E(m) and inwardly rectifying K(+) (K(IR)) currents in bovine pulmonary artery and microvascular endothelial cells (BPAEC and BMVEC), using whole cell patch-clamp techniques. Both cell types exhibited inward currents at potentials negative to -50 mV that were abolished by application of 10 microM Ba(2+), consistent with K(IR) current. Ba(2+) also depolarized both cell types. 8-Bromo-cGMP (10(-3) M) depolarized BPAEC and BMVEC and inhibited K(IR) current. Pretreatment with Rp-8-cPCT-cGMPS or KT-5823, protein kinase G (PKG) antagonists, did not prevent current inhibition by 8-bromo-cGMP. These data suggest that 8-bromo-cGMP induces depolarization in BPAEC and BMVEC due, in part, to PKG-independent inhibition of K(IR) current. The depolarization could be a protective mechanism that prevents endothelial cell barrier dysfunction by reducing the driving force for Ca(2+) entry.