Nav1 Channel
613 automatically associated literature references
1
Aydar E
et al.
Sigma-1 receptors modulate neonatal Nav1.5 ion channels in breast cancer cell lines.
Eur. Biophys. J.,
2016
May
9
, ().
2
Yang J
et al.
FGF13 modulates the gating properties of the cardiac sodium channel Nav1.5 in an isoform-specific manner.
Channels (Austin),
2016
May
31
, (1-11).
3
Hirano-Iwata A
et al.
Reconstitution of Human Ion Channels into Solvent-free Lipid Bilayers Enhanced by Centrifugal Forces.
Biophys. J.,
2016
May
24
, 110 (2207-15).
4
Zeng H
et al.
Use of FDSS/μCell imaging platform for preclinical cardiac electrophysiology safety screening of compounds in human induced pluripotent stem cell-derived cardiomyocytes.
J Pharmacol Toxicol Methods,
2016
May
21
, ().
5
Rosberg MR
et al.
Progression of motor axon dysfunction and ectopic Nav1.8 expression in a mouse model of Charcot-Marie-Tooth disease 1B.
Neurobiol. Dis.,
2016
May
20
, 93 (201-214).
6
Ali SR
et al.
Identification of Amino Acid Residues in Fibroblast Growth Factor 14 (FGF14) Required for Structure-Function Interactions with Voltage-gated Sodium Channel Nav1.6.
J. Biol. Chem.,
2016
May
20
, 291 (11268-84).
7
Mulcahy JV
et al.
Synthesis of the Paralytic Shellfish Poisons (+)-Gonyautoxin 2, (+)-Gonyautoxin 3, and (+)-11,11-Dihydroxysaxitoxin.
J. Am. Chem. Soc.,
2016
May
11
, 138 (5994-6001).
8
Schilling JM
et al.
Electrophysiology and metabolism of caveolin-3-overexpressing mice.
Basic Res. Cardiol.,
2016
May
, 111 (28).
9
Cheng LJ
et al.
Effects of Fluvastatin on Characteristics of Stellate Ganglion Neurons in a Rabbit Model of Myocardial Ischemia.
Chin. Med. J.,
2016
May
, 129 (549-56).
10
Gupta B
et al.
Antinociceptive properties of shikonin: in vitro and in vivo studies.
Can. J. Physiol. Pharmacol.,
2016
Mar
6
, (1-9).
11
Patel D
et al.
Computational Study of Binding of μ-Conotoxin GIIIA to Bacterial Sodium Channels NaVAb and NaVRh.
Biochemistry,
2016
Mar
29
, 55 (1929-38).
12
Tao H
et al.
Molecular determinant for the tarantula toxin Jingzhaotoxin-I slowing the fast inactivation of voltage-gated sodium channels.
Toxicon,
2016
Mar
1
, 111 (13-21).
13
Rogers M
et al.
Characterization of Endogenous Sodium Channels in the ND7-23 Neuroblastoma Cell Line: Implications for Use as a Heterologous Ion Channel Expression System Suitable for Automated Patch Clamp Screening.
Assay Drug Dev Technol,
2016
Mar
, 14 (109-30).
14
Chambers C
et al.
High-Throughput Screening of NaV1.7 Modulators Using a Giga-Seal Automated Patch Clamp Instrument.
Assay Drug Dev Technol,
2016
Mar
, 14 (93-108).
15
Henriques ST
et al.
Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes is a Prerequisite for its Inhibition of Human Voltage-gated Sodium Channel NaV1.7.
J. Biol. Chem.,
2016
Jun
16
, ().
16
Xu J
et al.
Peimine, a main active ingredient of Fritillaria, exhibits anti-inflammatory and pain suppression properties at the cellular level.
Fitoterapia,
2016
Jun
, 111 (1-6).
17
Du Y
et al.
β1-Adrenergic blocker bisoprolol reverses down-regulated ion channels in sinoatrial node of heart failure rats.
J. Physiol. Biochem.,
2016
Jun
, 72 (293-302).
18
Arias HR
et al.
Positive allosteric modulators of α7 nicotinic acetylcholine receptors affect neither the function of other ligand- and voltage-gated ion channels and acetylcholinesterase, nor β-amyloid content.
Int. J. Biochem. Cell Biol.,
2016
Jul
, 76 (19-30).
19
Zaklyazminskaya E
et al.
The role of mutations in the SCN5A gene in cardiomyopathies.
Biochim. Biophys. Acta,
2016
Jul
, 1863 (1799-805).
20
Sottas V
et al.
Negative-dominance phenomenon with genetic variants of the cardiac sodium channel Nav1.5.
Biochim. Biophys. Acta,
2016
Jul
, 1863 (1791-8).
21
Green BR
et al.
Structural Basis for the Inhibition of Voltage-gated Sodium Channels by Conotoxin μO§-GVIIJ.
J. Biol. Chem.,
2016
Jan
27
, ().
22
Cui HL
et al.
Catalytic asymmetric hetero-Diels-Alder reactions of enones with isatins to access functionalized spirooxindole tetrahydropyrans: scope, derivatization, and discovery of bioactives.
Org. Biomol. Chem.,
2016
Jan
27
, 14 (1777-83).
23
Wang HG
et al.
A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias.
J. Mol. Cell. Cardiol.,
2016
Jan
19
, 92 (52-62).
24
Tarvin RD
et al.
Convergent Substitutions in a Sodium Channel Suggest Multiple Origins of Toxin Resistance in Poison Frogs.
Mol. Biol. Evol.,
2016
Jan
18
, ().
25
He B
et al.
Effects of the β1 auxiliary subunit on modification of Rat Na(v)1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin.
Toxicol. Appl. Pharmacol.,
2016
Jan
15
, 291 (58-69).
26
Habbout K
et al.
A recessive Nav1.4 mutation underlies congenital myasthenic syndrome with periodic paralysis.
Neurology,
2016
Jan
12
, 86 (161-9).
27
Mohammed FH
et al.
Blockade of voltage-gated sodium channels inhibits invasion of endocrine-resistant breast cancer cells.
Int. J. Oncol.,
2016
Jan
, 48 (73-83).
28
Horvath GA
et al.
Secondary neurotransmitter deficiencies in epilepsy caused by voltage-gated sodium channelopathies: A potential treatment target?
Mol. Genet. Metab.,
2016
Jan
, 117 (42-8).
29
Stueber T
et al.
Quaternary Lidocaine Derivative QX-314 Activates and Permeates Human TRPV1 and TRPA1 to Produce Inhibition of Sodium Channels and Cytotoxicity.
Anesthesiology,
2016
Feb
9
, ().
30
Han C
et al.
Sodium channel Nav1.8: Emerging links to human disease.
Neurology,
2016
Feb
2
, 86 (473-83).
31
Roostaei T
et al.
Channelopathy-related SCN10A gene variants predict cerebellar dysfunction in multiple sclerosis.
Neurology,
2016
Feb
2
, 86 (410-7).
32
Murray JK
et al.
Single Residue Substitutions That Confer NaV Subtype Selectivity in the NaV1.7 Inhibitory Peptide GpTx-1.
J. Med. Chem.,
2016
Feb
18
, ().
33
Benned-Jensen T
et al.
Live Imaging of Kv7.2/7.3 Cell Surface Dynamics at the Axon Initial Segment: High Steady-State Stability and Calpain-Dependent Excitotoxic Downregulation Revealed.
J. Neurosci.,
2016
Feb
17
, 36 (2261-6).
34
Kim KX
et al.
Maturation of NaV and KV Channel Topographies in the Auditory Nerve Spike Initiator before and after Developmental Onset of Hearing Function.
J. Neurosci.,
2016
Feb
17
, 36 (2111-8).
35
Poulet C
et al.
Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation.
Physiol Rep,
2016
Feb
, 4 ().
36
Ye P
et al.
Functional up-regulation of Nav1.8 sodium channel on dorsal root ganglia neurons contributes to the induction of scorpion sting pain.
Acta Biochim. Biophys. Sin. (Shanghai),
2016
Feb
, 48 (132-44).
37
Murenzi E
et al.
Evaluation of microtransplantation of rat brain neurolemma into Xenopus laevis oocytes as a technique to study the effect of neurotoxicants on endogenous voltage-sensitive ion channels.
Neurotoxicology,
2016
Apr
7
, ().
38
Crumb WJ
et al.
An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel.
J Pharmacol Toxicol Methods,
2016
Apr
6
, ().
39
Branch SY
et al.
Dopaminergic Neurons Exhibit an Age-Dependent Decline in Electrophysiological Parameters in the MitoPark Mouse Model of Parkinson's Disease.
J. Neurosci.,
2016
Apr
6
, 36 (4026-37).
40
Shcherbatko A
et al.
Engineering Highly Potent and Selective Microproteins Against Nav1.7 Sodium Channel for Treatment of Pain.
J. Biol. Chem.,
2016
Apr
22
, ().
41
Frost JM
et al.
Substituted Indazoles as Nav1.7 Blockers for the Treatment of Pain.
J. Med. Chem.,
2016
Apr
14
, 59 (3373-91).
42
Nassal DM
et al.
Myocardial KChIP2 Expression in Guinea Pig Resolves an Expanded Electrophysiologic Role.
PLoS ONE,
2016
, 11 (e0146561).
43
Zhang H
et al.
Optical electrophysiology for probing function and pharmacology of voltage-gated ion channels.
Elife,
2016
, 5 ().
44
Lazcano-Pérez F
et al.
Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.
Toxins (Basel),
2016
, 8 ().
45
Kubanek J
et al.
Ultrasound modulates ion channel currents.
Sci Rep,
2016
, 6 (24170).
46
Choi JI
et al.
α1-Syntrophin Variant Identified in Drug-Induced Long QT Syndrome Increases Late Sodium Current.
PLoS ONE,
2016
, 11 (e0152355).
47
Alshammari MA
et al.
Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment.
Front Cell Neurosci,
2016
, 10 (5).
48
Leo-Macias A
et al.
Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc.
Nat Commun,
2016
, 7 (10342).
49
Wang X
et al.
Characterization of Specific Roles of Sodium Channel Subtypes in Regional Anesthesia.
Reg Anesth Pain Med,
2015 Sep-Oct
, 40 (599-604).
50
Eberhardt E
et al.
Pattern of Functional TTX-Resistant Sodium Channels Reveals a Developmental Stage of Human iPSC- and ESC-Derived Nociceptors.
Stem Cell Reports,
2015
Sep
8
, 5 (305-13).
51
Ji RR
Neuroimmune interactions in itch: Do chronic itch, chronic pain, and chronic cough share similar mechanisms?
Pulm Pharmacol Ther,
2015
Sep
6
, ().
52
Salas MM
et al.
Tetrodotoxin suppresses thermal hyperalgesia and mechanical allodynia in a rat full thickness thermal injury pain model.
Neurosci. Lett.,
2015
Sep
28
, 607 (108-113).
53
Nutter TJ
et al.
A delayed chronic pain like condition with decreased Kv channel activity in a rat model of Gulf War Illness pain syndrome.
Neurotoxicology,
2015
Sep
26
, 51 (67-79).
54
Remacle AG
et al.
Matrix Metalloproteinase (MMP) Proteolysis of the Extracellular Loop of Voltage-gated Sodium Channels and Potential Alterations in Pain Signaling.
J. Biol. Chem.,
2015
Sep
18
, 290 (22939-44).
55
Neshatian L
et al.
Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells.
Am. J. Physiol. Gastrointest. Liver Physiol.,
2015
Sep
15
, 309 (G506-12).
56
Kurowski P
et al.
Muscarinic receptor control of pyramidal neuron membrane potential in the medial prefrontal cortex (mPFC) in rats.
Neuroscience,
2015
Sep
10
, 303 (474-88).
57
Dib-Hajj SD
et al.
NaV1.9: a sodium channel linked to human pain.
Nat. Rev. Neurosci.,
2015
Sep
, 16 (511-9).
58
Aktas CC
et al.
In vitro effects of phenytoin and DAPT on MDA-MB-231 breast cancer cells.
Acta Biochim. Biophys. Sin. (Shanghai),
2015
Sep
, 47 (680-6).
59
Li G
et al.
Positive shift of Nav1.8 current inactivation curve in injured neurons causes neuropathic pain following chronic constriction injury.
Mol Med Rep,
2015
Sep
, 12 (3583-90).
60
Namer B
et al.
Specific changes in conduction velocity recovery cycles of single nociceptors in a patient with erythromelalgia with the I848T gain-of-function mutation of Nav1.7.
Pain,
2015
Sep
, 156 (1637-46).
61
Estacion M
et al.
Ca2+ toxicity due to reverse Na+/Ca2+ exchange contributes to degeneration of neurites of DRG neurons induced by a neuropathy-associated Nav1.7 mutation.
J. Neurophysiol.,
2015
Sep
, 114 (1554-64).
62
Musa H
et al.
SCN5A variant that blocks fibroblast growth factor homologous factor regulation causes human arrhythmia.
Proc. Natl. Acad. Sci. U.S.A.,
2015
Oct
6
, 112 (12528-33).
63
Endo R
et al.
Carvedilol Suppresses Apoptosis and Ion Channel Remodelling of HL-1 Cardiac Myocytes Expressing E334K cMyBPC.
Drug Res (Stuttg),
2015
Oct
19
, ().
64
Hao W
et al.
Design, synthesis and structure-activity relationship of indoxacarb analogs as voltage-gated sodium channel blocker.
Bioorg. Med. Chem. Lett.,
2015
Oct
15
, 25 (4576-9).
65
Patel R
et al.
Ionic Mechanisms of Spinal Neuronal Cold Hypersensitivity in Ciguatera.
Eur. J. Neurosci.,
2015
Oct
10
, ().
66
Klint JK
et al.
Rational engineering defines a molecular switch that is essential for activity of spider-venom peptides against the analgesics target NaV1.7.
Mol. Pharmacol.,
2015
Oct
1
, ().
67
Nicole S
et al.
Skeletal muscle sodium channelopathies.
Curr. Opin. Neurol.,
2015
Oct
, 28 (508-514xs).
68
Detta N
et al.
The multi-faceted aspects of the complex cardiac Nav1.5 protein in membrane function and pathophysiology.
Biochim. Biophys. Acta,
2015
Oct
, 1854 (1502-9).
69
Torbergsen T
et al.
Painful cramps and giant myotonic discharges in a family with the Nav1.4-G1306A mutation.
Muscle Nerve,
2015
Oct
, 52 (680-3).
70
Murray JK
et al.
Sustained inhibition of the NaV1.7 sodium channel by engineered dimers of the domain II binding peptide GpTx-1.
Bioorg. Med. Chem. Lett.,
2015
Nov
1
, 25 (4866-71).
71
Zheng G
et al.
Chronic stress and peripheral pain: Evidence for distinct, region-specific changes in visceral and somatosensory pain regulatory pathways.
Exp. Neurol.,
2015
Nov
, 273 (301-11).
72
Gawali VS
et al.
Mechanism of Modification, by Lidocaine, of Fast and Slow Recovery from Inactivation of Voltage-Gated Na⁺ Channels.
Mol. Pharmacol.,
2015
Nov
, 88 (866-79).
73
Liu C
et al.
Amyloid precursor protein enhances Nav1.6 sodium channel cell surface expression.
J. Biol. Chem.,
2015
May
8
, 290 (12048-57).
74
Hamada MS
et al.
Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability.
J. Neurosci.,
2015
May
6
, 35 (7272-86).
75
Han Z
et al.
The effects of A-803467 on cardiac Nav1.5 channels.
Eur. J. Pharmacol.,
2015
May
5
, 754 (52-60).
76
Lu VB
et al.
A 3.7 kb fragment of the mouse Scn10a gene promoter directs neural crest but not placodal lineage EGFP expression in a transgenic animal.
J. Neurosci.,
2015
May
20
, 35 (8021-34).
77
Emery EC
et al.
Novel SCN9A mutations underlying extreme pain phenotypes: unexpected electrophysiological and clinical phenotype correlations.
J. Neurosci.,
2015
May
20
, 35 (7674-81).
78
Lolignier S
et al.
The Nav1.9 channel is a key determinant of cold pain sensation and cold allodynia.
Cell Rep,
2015
May
19
, 11 (1067-78).
79
Chahine M
Gating pore current is a novel biophysical defect of Nav1.5 mutations associated with unusual cardiac arrhythmias and dilation.
Future Cardiol,
2015
May
, 11 (287-91).
80
Woods CG
et al.
The phenotype of congenital insensitivity to pain due to the NaV1.9 variant p.L811P.
Eur. J. Hum. Genet.,
2015
May
, 23 (561-3).
81
Zhu JF
et al.
Novel heterozygous mutation c.4282G>T in the SCN5A gene in a family with Brugada syndrome.
Exp Ther Med,
2015
May
, 9 (1639-1645).
82
Kalume F
et al.
Sleep impairment and reduced interneuron excitability in a mouse model of Dravet Syndrome.
Neurobiol. Dis.,
2015
May
, 77 (141-54).
83
Marionneau C
et al.
Regulation of the cardiac Na+ channel NaV1.5 by post-translational modifications.
J. Mol. Cell. Cardiol.,
2015
May
, 82 (36-47).
84
Tsai MS
et al.
Functional and structural deficits of the dentate gyrus network coincide with emerging spontaneous seizures in an Scn1a mutant Dravet Syndrome model during development.
Neurobiol. Dis.,
2015
May
, 77 (35-48).
85
Blanchard MG
et al.
De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy.
J. Med. Genet.,
2015
May
, 52 (330-7).
86
Wildburger NC
et al.
Quantitative proteomics reveals protein-protein interactions with fibroblast growth factor 12 as a component of the voltage-gated sodium channel 1.2 (nav1.2) macromolecular complex in Mammalian brain.
Mol. Cell Proteomics,
2015
May
, 14 (1288-300).
87
Liu GX
et al.
Overexpression of SCN5A in mouse heart mimics human syndrome of enhanced atrioventricular nodal conduction.
Heart Rhythm,
2015
May
, 12 (1036-45).
88
Stadler T
et al.
Erythromelalgia mutation Q875E Stabilizes the activated state of sodium channel Nav1.7.
J. Biol. Chem.,
2015
Mar
6
, 290 (6316-25).
89
Tan BY
et al.
A Brugada syndrome proband with compound heterozygote SCN5A mutations identified from a Chinese family in Singapore.
Europace,
2015
Mar
31
, ().
90
Han C
et al.
Human Nav1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons.
J. Neurophysiol.,
2015
Mar
18
, (jn.00113.2015).
91
Mishra S
et al.
Contribution of sodium channel neuronal isoform Nav1.1 to late sodium current in ventricular myocytes from failing hearts.
J. Physiol. (Lond.),
2015
Mar
15
, 593 (1409-27).
92
Murray JK
et al.
Engineering Potent and Selective Analogues of GpTx-1, a Tarantula Venom Peptide Antagonist of the NaV1.7 Sodium Channel.
J. Med. Chem.,
2015
Mar
12
, 58 (2299-314).
93
Ossola D
et al.
Force-controlled patch clamp of beating cardiac cells.
Nano Lett.,
2015
Mar
11
, 15 (1743-50).
94
Tigerholm J
et al.
C-fiber recovery cycle supernormality depends on ion concentration and ion channel permeability.
Biophys. J.,
2015
Mar
10
, 108 (1057-71).
95
Gazina EV
et al.
'Neonatal' Nav1.2 reduces neuronal excitability and affects seizure susceptibility and behaviour.
Hum. Mol. Genet.,
2015
Mar
1
, 24 (1457-68).
96
Kong W
et al.
SCN8A mutations in Chinese children with early onset epilepsy and intellectual disability.
Epilepsia,
2015
Mar
, 56 (431-8).
97
Yan Z
et al.
Expression and functional role of Nav1.9 sodium channel in cartwheel cells of the dorsal cochlear nucleus.
Mol Med Rep,
2015
Mar
, 11 (1833-6).
98
Bechi G
et al.
Rescuable folding defective NaV1.1 (SCN1A) mutants in epilepsy: properties, occurrence, and novel rescuing strategy with peptides targeted to the endoplasmic reticulum.
Neurobiol. Dis.,
2015
Mar
, 75 (100-14).
99
Rahman W
et al.
Osteoarthritis-dependent changes in antinociceptive action of Nav1.7 and Nav1.8 sodium channel blockers: An in vivo electrophysiological study in the rat.
Neuroscience,
2015
Jun
4
, 295 (103-16).
100
Zhang MM
et al.
Probing the Redox States of Sodium Channel Cysteines at the Binding Site of μO§-Conotoxin GVIIJ.
Biochemistry,
2015
Jun
30
, 54 (3911-20).
101
Hoeijmakers JG
et al.
Painful peripheral neuropathy and sodium channel mutations.
Neurosci. Lett.,
2015
Jun
2
, 596 (51-9).
102
Du Y
et al.
Development and validation of a thallium flux-based functional assay for the sodium channel NaV1.7 and its utility for lead discovery and compound profiling.
ACS Chem Neurosci,
2015
Jun
17
, 6 (871-8).
103
Behr ER
et al.
Role of common and rare variants in SCN10A: results from the Brugada syndrome QRS locus gene discovery collaborative study.
Cardiovasc. Res.,
2015
Jun
1
, 106 (520-9).
104
Mercier A
et al.
Nav1.5 channels can reach the plasma membrane through distinct N-glycosylation states.
Biochim. Biophys. Acta,
2015
Jun
, 1850 (1215-23).
105
Ye P
et al.
Scorpion toxin BmK I directly activates Nav1.8 in primary sensory neurons to induce neuronal hyperexcitability in rats.
Protein Cell,
2015
Jun
, 6 (443-52).
106
Fukasawa T
et al.
A case of recurrent encephalopathy with SCN2A missense mutation.
Brain Dev.,
2015
Jun
, 37 (631-4).
107
Wannous R
et al.
Suppression of PPARβ, and DHA treatment, inhibit NaV1.5 and NHE-1 pro-invasive activities.
Pflugers Arch.,
2015
Jun
, 467 (1249-59).
108
Stroemlund LW
et al.
Gap junctions - guards of excitability.
Biochem. Soc. Trans.,
2015
Jun
, 43 (508-12).
109
Huang Y
et al.
Molecular basis of the inhibition of the fast inactivation of voltage-gated sodium channel Nav1.5 by tarantula toxin Jingzhaotoxin-II.
Peptides,
2015
Jun
, 68 (175-82).
110
Han C
et al.
The Domain II S4-S5 Linker in Nav1.9: A Missense Mutation Enhances Activation, Impairs Fast Inactivation, and Produces Human Painful Neuropathy.
Neuromolecular Med.,
2015
Jun
, 17 (158-69).
111
Winkel BG
et al.
The role of the sodium current complex in a nonreferred nationwide cohort of sudden infant death syndrome.
Heart Rhythm,
2015
Jun
, 12 (1241-9).
112
Daimi H
et al.
Regulation of SCN5A by microRNAs: miR-219 modulates SCN5A transcript expression and the effects of flecainide intoxication in mice.
Heart Rhythm,
2015
Jun
, 12 (1333-42).
113
Cai T
et al.
Mapping the interaction site for the tarantula toxin hainantoxin-IV (β-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels.
Peptides,
2015
Jun
, 68 (148-56).
114
Coronas FI
et al.
Biochemical and physiological characterization of a new Na(+)-channel specific peptide from the venom of the Argentinean scorpion Tityus trivittatus.
Peptides,
2015
Jun
, 68 (11-6).
115
Xu M
et al.
An Ankyrin-G N-terminal Gate and Protein Kinase CK2 Dually Regulate Binding of Voltage-gated Sodium and KCNQ2/3 Potassium Channels.
J. Biol. Chem.,
2015
Jul
3
, 290 (16619-32).
116
Talbot S
et al.
Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation.
Neuron,
2015
Jul
15
, 87 (341-54).
117
Torregrosa R
et al.
Chimeric derivatives of functionalized amino acids and α-aminoamides: compounds with anticonvulsant activity in seizure models and inhibitory actions on central, peripheral, and cardiac isoforms of voltage-gated sodium channels.
Bioorg. Med. Chem.,
2015
Jul
1
, 23 (3655-66).
118
Chow CY
et al.
Three Peptide Modulators of the Human Voltage-Gated Sodium Channel 1.7, an Important Analgesic Target, from the Venom of an Australian Tarantula.
Toxins (Basel),
2015
Jul
, 7 (2494-513).
119
Slowik D
et al.
Benchmarking the stability of human detergent-solubilised voltage-gated sodium channels for structural studies using eel as a reference.
Biochim. Biophys. Acta,
2015
Jul
, 1848 (1545-51).
120
Wang ZJ
et al.
Inhibition of Nav1.7 channels by methyl eugenol as a mechanism underlying its antinociceptive and anesthetic actions.
Acta Pharmacol. Sin.,
2015
Jul
, 36 (791-9).
121
Pucca MB
et al.
Revealing the Function and the Structural Model of Ts4: Insights into the "Non-Toxic" Toxin from Tityus serrulatus Venom.
Toxins (Basel),
2015
Jul
, 7 (2534-50).
122
Wang M
et al.
[Dynamic expressions of Nav1.2 and Nav1.6 in hippocampal CA3 region of epileptic rats].
Zhonghua Yi Xue Za Zhi,
2015
Jan
6
, 95 (61-5).
123
Zhang J
et al.
Electrophysiological and trafficking defects of the SCN5A T353I mutation in Brugada syndrome are rescued by alpha-allocryptopine.
Eur. J. Pharmacol.,
2015
Jan
5
, 746 (333-43).
124
Chong E
et al.
Resveratrol, a red wine antioxidant, reduces atrial fibrillation susceptibility in the failing heart by PI3K/AKT/eNOS signaling pathway activation.
Heart Rhythm,
2015
Jan
30
, ().
125
Fukuoka T
et al.
De novo expression of Nav1.7 in injured putative proprioceptive afferents: Multiple tetrodotoxin-sensitive sodium channels are retained in the rat dorsal root after spinal nerve ligation.
Neuroscience,
2015
Jan
22
, 284 (693-706).
126
Wagnon JL
et al.
Convulsive seizures and SUDEP in a mouse model of SCN8A epileptic encephalopathy.
Hum. Mol. Genet.,
2015
Jan
15
, 24 (506-15).
127
Lynch SM
et al.
Dibenzazepines and dibenzoxazepines as sodium channel blockers.
Bioorg. Med. Chem. Lett.,
2015
Jan
1
, 25 (43-7).
128
Lynch SM
et al.
N-Aryl azacycles as novel sodium channel blockers.
Bioorg. Med. Chem. Lett.,
2015
Jan
1
, 25 (48-52).
129
Saber S
et al.
Complex genetic background in a large family with Brugada syndrome.
Physiol Rep,
2015
Jan
1
, 3 ().
130
Kirchhof P
et al.
First report on an inotropic peptide activating tetrodotoxin-sensitive, "neuronal" sodium currents in the heart.
Circ Heart Fail,
2015
Jan
, 8 (79-88).
131
Stoetzer C
et al.
Methadone is a local anaesthetic-like inhibitor of neuronal Na+ channels and blocks excitability of mouse peripheral nerves.
Br J Anaesth,
2015
Jan
, 114 (110-20).
132
Zhang F
et al.
Natural mutations change the affinity of μ-theraphotoxin-Hhn2a to voltage-gated sodium channels.
Toxicon,
2015
Jan
, 93 (24-30).
133
Rubinstein M
et al.
Genetic background modulates impaired excitability of inhibitory neurons in a mouse model of Dravet syndrome.
Neurobiol. Dis.,
2015
Jan
, 73 (106-17).
134
Sato T
et al.
Glial reaction in the spinal cord of the degenerating muscle mouse (Scn8a (dmu)).
Neurochem. Res.,
2015
Jan
, 40 (124-9).
135
Feng B
et al.
Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings.
J. Neurophysiol.,
2015
Feb
4
, (jn.00717.2014).
136
Larsen J
et al.
The phenotypic spectrum of SCN8A encephalopathy.
Neurology,
2015
Feb
3
, 84 (480-9).
137
Vandael DH
et al.
Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells.
J. Physiol. (Lond.),
2015
Feb
15
, 593 (905-27).
138
Moreau A
et al.
Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy.
J. Gen. Physiol.,
2015
Feb
, 145 (93-106).
139
Beltran-Alvarez P
et al.
Interplay between R513 methylation and S516 phosphorylation of the cardiac voltage-gated sodium channel.
Amino Acids,
2015
Feb
, 47 (429-34).
140
Ednie AR
et al.
Sialic acids attached to N- and O-glycans within the Nav1.4 D1S5-S6 linker contribute to channel gating.
Biochim. Biophys. Acta,
2015
Feb
, 1850 (307-17).
141
Zhang H
et al.
Reporting sodium channel activity using calcium flux: pharmacological promiscuity of cardiac Nav1.5.
Mol. Pharmacol.,
2015
Feb
, 87 (207-17).
142
Suter MR
et al.
p.L1612P, a novel voltage-gated sodium channel Nav1.7 mutation inducing a cold sensitive paroxysmal extreme pain disorder.
Anesthesiology,
2015
Feb
, 122 (414-23).
143
Bi RY
et al.
A new hypothesis of sex-differences in temporomandibular disorders: estrogen enhances hyperalgesia of inflamed TMJ through modulating voltage-gated sodium channel 1.7 in trigeminal ganglion?
Med. Hypotheses,
2015
Feb
, 84 (100-3).
144
Jabbari J
et al.
Common and rare variants in SCN10A modulate the risk of atrial fibrillation.
Circ Cardiovasc Genet,
2015
Feb
, 8 (64-73).
145
Tikhonov DB
et al.
State-dependent inter-repeat contacts of exceptionally conserved asparagines in the inner helices of sodium and calcium channels.
Pflugers Arch.,
2015
Feb
, 467 (253-66).
146
Teramoto N
et al.
Selective blocking effects of 4,9-anhydrotetrodotoxin, purified from a crude mixture of tetrodotoxin analogues, on NaV1.6 channels and its chemical aspects.
Mar Drugs,
2015
Feb
, 13 (984-95).
147
Zhu W
et al.
Molecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry.
Prog. Biophys. Mol. Biol.,
2015
Dec
25
, ().
148
Obergrussberger A
et al.
Automated Patch Clamp Meets High-Throughput Screening: 384 Cells Recorded in Parallel on a Planar Patch Clamp Module.
J Lab Autom,
2015
Dec
23
, ().
149
Zaharieva IT
et al.
Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or 'classical' congenital myopathy.
Brain,
2015
Dec
22
, ().
150
Ahuja S
et al.
Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist.
Science,
2015
Dec
18
, 350 (aac5464).
151
Spencer NJ
Switching off pain at the source: is this the end for opioid pain relief?
Pain Manag,
2015
Dec
17
, ().
152
Li N
et al.
Downregulation of the sodium channel Nav1.6 by potential transcriptomic deregulation may explain sensory deficits in critical illness neuropathy.
Life Sci.,
2015
Dec
15
, 143 (231-6).
153
Veerman CC
et al.
The cardiac sodium channel gene SCN5A and its gene product NaV1.5: Role in physiology and pathophysiology.
Gene,
2015
Dec
1
, 573 (177-87).
154
Huang X
et al.
Age-dependent alterations of voltage-gated Na(+) channel isoforms in rat sinoatrial node.
Mech. Ageing Dev.,
2015
Dec
, 152 (80-90).
155
Szabat M
et al.
High-content screening identifies a role for Na(+) channels in insulin production.
R Soc Open Sci,
2015
Dec
, 2 (150306).
156
Kancherla AK
et al.
A Disulfide Stabilized β-Sandwich Defines the Structure of a New Cysteine Framework M-Superfamily Conotoxin.
ACS Chem. Biol.,
2015
Aug
21
, 10 (1847-60).
157
Crestey F
et al.
Identification and electrophysiological evaluation of 2-methylbenzamide derivatives as Nav1.1 modulators.
ACS Chem Neurosci,
2015
Aug
19
, 6 (1302-8).
158
Glynn P
et al.
Voltage-Gated Sodium Channel Phosphorylation at Ser571 Regulates Late Current, Arrhythmia, and Cardiac Function In Vivo.
Circulation,
2015
Aug
18
, 132 (567-77).
159
Varga Z
et al.
Direct Measurement of Cardiac Na+ Channel Conformations Reveals Molecular Pathologies of Inherited Mutations.
Circ Arrhythm Electrophysiol,
2015
Aug
17
, ().
160
Rubinstein M
et al.
Dissecting the phenotypes of Dravet syndrome by gene deletion.
Brain,
2015
Aug
, 138 (2219-33).
161
Cardoso FC
et al.
Identification and Characterization of ProTx-III [μ-TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula Thrixopelma pruriens.
Mol. Pharmacol.,
2015
Aug
, 88 (291-303).
162
Biet M
et al.
Prolongation of action potential duration and QT interval during epilepsy linked to increased contribution of neuronal sodium channels to cardiac late Na+ current: potential mechanism for sudden death in epilepsy.
Circ Arrhythm Electrophysiol,
2015
Aug
, 8 (912-20).
163
Potet F
et al.
Intracellular calcium attenuates late current conducted by mutant human cardiac sodium channels.
Circ Arrhythm Electrophysiol,
2015
Aug
, 8 (933-41).
164
Pucca MB
et al.
Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages.
Biochimie,
2015
Aug
, 115 (8-16).
165
Peigneur S
et al.
A gamut of undiscovered electrophysiological effects produced by Tityus serrulatus toxin 1 on NaV-type isoforms.
Neuropharmacology,
2015
Apr
7
, ().
166
Xie W
et al.
Local knockdown of the NaV1.6 sodium channel reduces pain behaviors, sensory neuron excitability, and sympathetic sprouting in rat models of neuropathic pain.
Neuroscience,
2015
Apr
16
, 291 (317-30).
167
Guo F
et al.
Low-Mg(2+) treatment increases sensitivity of voltage-gated Na(+) channels to Ca(2+)/calmodulin-mediated modulation in cultured hippocampal neurons.
Am. J. Physiol., Cell Physiol.,
2015
Apr
15
, 308 (C594-605).
168
Willis BC
et al.
Protein Assemblies of Sodium and Inward Rectifier Potassium Channels Control Cardiac Excitability and Arrhythmogenesis.
Am. J. Physiol. Heart Circ. Physiol.,
2015
Apr
10
, (ajpheart.00176.2015).
169
Wilson MJ
et al.
Α- and β-subunit composition of voltage-gated sodium channels investigated with μ-conotoxins and the recently discovered μO§-conotoxin GVIIJ.
J. Neurophysiol.,
2015
Apr
1
, 113 (2289-301).
170
Cannon SC
Channelopathies of skeletal muscle excitability.
Compr Physiol,
2015
Apr
, 5 (761-90).
171
James TF
et al.
The Nav1.2 channel is regulated by GSK3.
Biochim. Biophys. Acta,
2015
Apr
, 1850 (832-44).
172
Zhang C
et al.
17β-Estradiol increases persistent Na(+) current and excitability of AVPV/PeN Kiss1 neurons in female mice.
Mol. Endocrinol.,
2015
Apr
, 29 (518-27).
173
Chung G
et al.
Generation of resonance-dependent oscillation by mGluR-I activation switches single spiking to bursting in mesencephalic trigeminal sensory neurons.
Eur. J. Neurosci.,
2015
Apr
, 41 (998-1012).
174
Bugiardini E
et al.
SCN4A mutation as modifying factor of myotonic dystrophy type 2 phenotype.
Neuromuscul. Disord.,
2015
Apr
, 25 (301-7).
175
Habib AM
et al.
Sodium channels and pain.
Handb Exp Pharmacol,
2015
, 227 (39-56).
176
Hsu WC
et al.
Identifying a kinase network regulating FGF14:Nav1.6 complex assembly using split-luciferase complementation.
PLoS ONE,
2015
, 10 (e0117246).
177
Wang L
et al.
A mutation in the intracellular loop III/IV of mosquito sodium channel synergizes the effect of mutations in helix IIS6 on pyrethroid resistance.
Mol. Pharmacol.,
2015
, 87 (421-9).
178
Iqbal SM
et al.
Differential Modulation of Fast Inactivation in Cardiac Sodium Channel Splice Variants by Fyn Tyrosine Kinase.
Cell. Physiol. Biochem.,
2015
, 37 (825-37).
179
180
Mahdavi S
et al.
Mechanism of Ion Permeation in Mammalian Voltage-Gated Sodium Channels.
PLoS ONE,
2015
, 10 (e0133000).
181
Hoffman-Zacharska D
et al.
From focal epilepsy to Dravet syndrome--Heterogeneity of the phenotype due to SCN1A mutations of the p.Arg1596 amino acid residue in the Nav1.1 subunit.
Neurol. Neurochir. Pol.,
2015
, 49 (258-66).
182
Yamanushi TT
et al.
Comparison of formaldehyde and methanol fixatives used in the detection of ion channel proteins in isolated rat ventricular myocytes by immunofluorescence labelling and confocal microscopy.
Folia Morphol. (Warsz),
2015
, 74 (258-61).
183
Stephens RF
et al.
Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels.
Front Physiol,
2015
, 6 (153).
184
Nelson M
et al.
The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis.
Mol. Cancer,
2015
, 14 (13).
185
Brun J
et al.
Smooth Muscle-Like Cells Generated from Human Mesenchymal Stromal Cells Display Marker Gene Expression and Electrophysiological Competence Comparable to Bladder Smooth Muscle Cells.
PLoS ONE,
2015
, 10 (e0145153).
186
Obejero-Paz CA
et al.
Quantitative Profiling of the Effects of Vanoxerine on Human Cardiac Ion Channels and its Application to Cardiac Risk.
Sci Rep,
2015
, 5 (17623).
187
Nikolaidou T
et al.
Congestive Heart Failure Leads to Prolongation of the PR Interval and Atrioventricular Junction Enlargement and Ion Channel Remodelling in the Rabbit.
PLoS ONE,
2015
, 10 (e0141452).
188
Gu H
et al.
cAMP/PKA Pathways and S56 Phosphorylation Are Involved in AA/PGE2-Induced Increases in rNaV1.4 Current.
PLoS ONE,
2015
, 10 (e0140715).
189
Hu RM
et al.
Arrhythmogenic Biophysical Phenotype for SCN5A Mutation S1787N Depends upon Splice Variant Background and Intracellular Acidosis.
PLoS ONE,
2015
, 10 (e0124921).
190
Akin EJ
et al.
Preferential targeting of Nav1.6 voltage-gated Na+ Channels to the axon initial segment during development.
PLoS ONE,
2015
, 10 (e0124397).
191
Liu XL
et al.
Mutations of SCN4A gene cause different diseases: 2 case reports and literature review.
Channels (Austin),
2015
, 9 (82-7).
192
Tang C
et al.
Synergetic action of domain II and IV underlies persistent current generation in Nav1.3 as revealed by a tarantula toxin.
Sci Rep,
2015
, 5 (9241).
193
Han Z
et al.
Deletion of PDK1 causes cardiac sodium current reduction in mice.
PLoS ONE,
2015
, 10 (e0122436).
194
Gu XY
et al.
Dexmedetomidine inhibits Tetrodotoxin-resistant Nav1.8 sodium channel activity through Gi/o-dependent pathway in rat dorsal root ganglion neurons.
Mol Brain,
2015
, 8 (15).
195
Shields SD
et al.
Oral administration of PF-01247324, a subtype-selective Nav1.8 blocker, reverses cerebellar deficits in a mouse model of multiple sclerosis.
PLoS ONE,
2015
, 10 (e0119067).
196
Leipold E
et al.
Cold-aggravated pain in humans caused by a hyperactive NaV1.9 channel mutant.
Nat Commun,
2015
, 6 (10049).
197
Bao L
Trafficking regulates the subcellular distribution of voltage-gated sodium channels in primary sensory neurons.
Mol Pain,
2015
, 11 (61).
198
Barbosa C
et al.
Navβ4 regulates fast resurgent sodium currents and excitability in sensory neurons.
Mol Pain,
2015
, 11 (60).
199
Wang L
et al.
De Novo Mutation in the SCN5A Gene Associated with Brugada Syndrome.
Cell. Physiol. Biochem.,
2015
, 36 (2250-62).
200
Sun LH
et al.
MicroRNA-9 induces defective trafficking of Nav1.1 and Nav1.2 by targeting Navβ2 protein coding region in rat with chronic brain hypoperfusion.
Mol Neurodegener,
2015
, 10 (36).
201
Pal D
et al.
Reduced Nav1.6 Sodium Channel Activity in Mice Increases In Vivo Sensitivity to Volatile Anesthetics.
PLoS ONE,
2015
, 10 (e0134960).
202
Kharatmal SB
et al.
Voltage-Gated Sodium Channels as Therapeutic Targets for Treatment of Painful Diabetic Neuropathy.
Mini Rev Med Chem,
2015
, 15 (1134-47).
203
Patel RR
et al.
Human Nav1.6 Channels Generate Larger Resurgent Currents than Human Nav1.1 Channels, but the Navβ4 Peptide Does Not Protect Either Isoform from Use-Dependent Reduction.
PLoS ONE,
2015
, 10 (e0133485).
204
Chen W
et al.
Tumor necrosis factor-α enhances voltage-gated Na⁺ currents in primary culture of mouse cortical neurons.
J Neuroinflammation,
2015
, 12 (126).
205
Tan AM
et al.
Virus-Mediated Knockdown of Nav1.3 in Dorsal Root Ganglia of STZ-Induced Diabetic Rats Alleviates Tactile Allodynia.
Mol. Med.,
2015
, 21 (544-52).
206
Camargos TS
et al.
The Scorpion Toxin Tf2 from Tityus fasciolatus Promotes Nav1.3 Opening.
PLoS ONE,
2015
, 10 (e0128578).
207
Wang Y
et al.
Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine.
PLoS ONE,
2015
, 10 (e0128653).
208
Doran C
et al.
Mouse DRG Cell Line with Properties of Nociceptors.
PLoS ONE,
2015
, 10 (e0128670).
209
Koenig J
et al.
Regulation of Nav1.7: A Conserved SCN9A Natural Antisense Transcript Expressed in Dorsal Root Ganglia.
PLoS ONE,
2015
, 10 (e0128830).
210
Rice FL
et al.
Sodium channel Nav1.7 in vascular myocytes, endothelium, and innervating axons in human skin.
Mol Pain,
2015
, 11 (26).
211
Chen YJ
et al.
Electrophysiological Differences between the Same Pore Region Mutation in SCN1A and SCN3A.
Mol. Neurobiol.,
2015
, 51 (1263-70).
212
Mirams GR
et al.
Prediction of Thorough QT study results using action potential simulations based on ion channel screens.
J Pharmacol Toxicol Methods,
2014 Nov-Dec
, 70 (246-54).
213
Sällström J
et al.
Pharmacokinetic-pharmacodynamic modeling of QRS-prolongation by flecainide: Heart rate-dependent effects during sinus rhythm in conscious telemetered dogs.
J Pharmacol Toxicol Methods,
2014 Jan-Feb
, 69 (24-9).
214
Dusmez D
et al.
Effect of verapamil and lidocaine on TRPM and NaV1.9 gene expressions in renal ischemia-reperfusion.
Transplant. Proc.,
2014 Jan-Feb
, 46 (33-9).
215
King GF
et al.
No gain, no pain: NaV1.7 as an analgesic target.
ACS Chem Neurosci,
2014
Sep
17
, 5 (749-51).
216
Hien YE
et al.
CK2 accumulation at the axon initial segment depends on sodium channel Nav1.
FEBS Lett.,
2014
Sep
17
, 588 (3403-8).
217
Sun S
et al.
The discovery of benzenesulfonamide-based potent and selective inhibitors of voltage-gated sodium channel Na(v)1.7.
Bioorg. Med. Chem. Lett.,
2014
Sep
15
, 24 (4397-401).
218
Huang J
et al.
Depolarized inactivation overcomes impaired activation to produce DRG neuron hyperexcitability in a Nav1.7 mutation in a patient with distal limb pain.
J. Neurosci.,
2014
Sep
10
, 34 (12328-40).
219
Ho GD
et al.
Discovery of pyrrolo-benzo-1,4-diazines as potent Na(v)1.7 sodium channel blockers.
Bioorg. Med. Chem. Lett.,
2014
Sep
1
, 24 (4110-3).
220
Ding T
et al.
Neural tissue engineering scaffold with sustained RAPA release relieves neuropathic pain in rats.
Life Sci.,
2014
Sep
1
, 112 (22-32).
221
Frenz CT
et al.
NaV1.5 sodium channel window currents contribute to spontaneous firing in olfactory sensory neurons.
J. Neurophysiol.,
2014
Sep
1
, 112 (1091-104).
222
Bartok A
et al.
Margatoxin is a non-selective inhibitor of human Kv1.3 K(+) channels.
Toxicon,
2014
Sep
, 87 (6-16).
223
Li T
et al.
Action potential initiation in neocortical inhibitory interneurons.
PLoS Biol.,
2014
Sep
, 12 (e1001944).
224
Estacion M
et al.
A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy.
Neurobiol. Dis.,
2014
Sep
, 69 (117-23).
225
Horishita T
et al.
Neurosteroids allopregnanolone sulfate and pregnanolone sulfate have diverse effect on the α subunit of the neuronal voltage-gated sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8 expressed in xenopus oocytes.
Anesthesiology,
2014
Sep
, 121 (620-31).
226
Hirofuji S
et al.
Role of sodium channels in recovery of sciatic nerve-stretch injury in rats.
Muscle Nerve,
2014
Sep
, 50 (425-30).
227
Cai B
et al.
Deletion of FoxO1 leads to shortening of QRS by increasing Na(+) channel activity through enhanced expression of both cardiac NaV1.5 and β3 subunit.
J. Mol. Cell. Cardiol.,
2014
Sep
, 74 (297-306).
228
Huang Y
et al.
The role of TNF-alpha/NF-kappa B pathway on the up-regulation of voltage-gated sodium channel Nav1.7 in DRG neurons of rats with diabetic neuropathy.
Neurochem. Int.,
2014
Sep
, 75 (112-9).
229
Sun S
et al.
Inhibitors of voltage-gated sodium channel Nav1.7: patent applications since 2010.
Pharm Pat Anal,
2014
Sep
, 3 (509-21).
230
Korkosh VS
et al.
Folding similarity of the outer pore region in prokaryotic and eukaryotic sodium channels revealed by docking of conotoxins GIIIA, PIIIA, and KIIIA in a NavAb-based model of Nav1.4.
J. Gen. Physiol.,
2014
Sep
, 144 (231-44).
231
Meglič A
et al.
Painful micturition in a small child: an unusual clinical picture of paroxysmal extreme pain disorder.
Pediatr. Nephrol.,
2014
Sep
, 29 (1643-6).
232
Devigili G
et al.
Paroxysmal itch caused by gain-of-function Nav1.7 mutation.
Pain,
2014
Sep
, 155 (1702-7).
233
Pappalardo LW
et al.
Dynamics of sodium channel Nav1.5 expression in astrocytes in mouse models of multiple sclerosis.
Neuroreport,
2014
Oct
22
, 25 (1208-15).
234
Gur Barzilai M
et al.
The specificity of Av3 sea anemone toxin for arthropods is determined at linker DI/SS2-S6 in the pore module of target sodium channels.
Biochem. J.,
2014
Oct
15
, 463 (271-7).
235
Harrer JU
et al.
Neuropathic pain in two-generation twins carrying the sodium channel Nav1.7 functional variant R1150W.
Pain,
2014
Oct
, 155 (2199-203).
236
Shi D
et al.
Reduction in dynamin-2 is implicated in ischaemic cardiac arrhythmias.
J. Cell. Mol. Med.,
2014
Oct
, 18 (1992-9).
237
Poulin H
et al.
Fluoxetine blocks Nav1.5 channels via a mechanism similar to that of class 1 antiarrhythmics.
Mol. Pharmacol.,
2014
Oct
, 86 (378-89).
238
Dhalla AK
et al.
Blockade of Na+ channels in pancreatic α-cells has antidiabetic effects.
Diabetes,
2014
Oct
, 63 (3545-56).
239
Green BR
et al.
Structure and function of μ-conotoxins, peptide-based sodium channel blockers with analgesic activity.
Future Med Chem,
2014
Oct
, 6 (1677-98).
240
Boehringer T
et al.
SCN5A mutations and polymorphisms in patients with ventricular fibrillation during acute myocardial infarction.
Mol Med Rep,
2014
Oct
, 10 (2039-44).
241
Foadi N
et al.
A combination of topical antiseptics for the treatment of sore throat blocks voltage-gated neuronal sodium channels.
Naunyn Schmiedebergs Arch. Pharmacol.,
2014
Oct
, 387 (991-1000).
242
Hoeijmakers JG
et al.
Channelopathies, painful neuropathy, and diabetes: which way does the causal arrow point?
Trends Mol Med,
2014
Oct
, 20 (544-50).
243
Yue JX
et al.
Histamine upregulates Nav1.8 expression in primary afferent neurons via H2 receptors: involvement in neuropathic pain.
CNS Neurosci Ther,
2014
Oct
, 20 (883-92).
244
Deuis JR
et al.
Analgesic effects of clinically used compounds in novel mouse models of polyneuropathy induced by oxaliplatin and cisplatin.
Neuro-oncology,
2014
Oct
, 16 (1324-32).
245
Dong ZF
et al.
Transcription of the human sodium channel SCN1A gene is repressed by a scaffolding protein RACK1.
Mol. Neurobiol.,
2014
Oct
, 50 (438-48).
246
Hockley JR
et al.
Multiple roles for NaV1.9 in the activation of visceral afferents by noxious inflammatory, mechanical, and human disease-derived stimuli.
Pain,
2014
Oct
, 155 (1962-75).
247
Wang X
et al.
Angiotensin-(1-7) prevent atrial tachycardia induced sodium channel remodeling.
Pacing Clin Electrophysiol,
2014
Oct
, 37 (1349-56).
248
Liu M
et al.
Cardiac sodium channel mutations: why so many phenotypes?
Nat Rev Cardiol,
2014
Oct
, 11 (607-15).
249
Shy D
et al.
Targeting the sodium channel NaV1.5 to specific membrane compartments of cardiac cells: not a simple task!
Circ. Res.,
2014
Nov
7
, 115 (901-3).
250
Makara MA
et al.
Ankyrin-G coordinates intercalated disc signaling platform to regulate cardiac excitability in vivo.
Circ. Res.,
2014
Nov
7
, 115 (929-38).
251
Hedrich UB
et al.
Impaired action potential initiation in GABAergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human Na(V)1.1 mutation.
J. Neurosci.,
2014
Nov
5
, 34 (14874-89).
252
Tan ZY
et al.
Protein kinase C enhances human sodium channel hNav1.7 resurgent currents via a serine residue in the domain III-IV linker.
FEBS Lett.,
2014
Nov
3
, 588 (3964-9).
253
Zhao Z
et al.
Cilostazol ameliorates atrial ionic remodeling in long-term rapid atrial pacing dogs.
Anatol J Cardiol,
2014
Nov
11
, ().
254
Gillet L
et al.
Elucidating sodium channel NaV1.5 clustering in cardiac myocytes using super-resolution techniques.
Cardiovasc. Res.,
2014
Nov
1
, 104 (231-3).
255
Chatin B
et al.
Dynamitin affects cell-surface expression of voltage-gated sodium channel Nav1.5.
Biochem. J.,
2014
Nov
1
, 463 (339-49).
256
Zhang Q
et al.
Na+ current properties in islet α- and β-cells reflect cell-specific Scn3a and Scn9a expression.
J. Physiol. (Lond.),
2014
Nov
1
, 592 (4677-96).
257
Agullo-Pascual E
et al.
Super-resolution imaging reveals that loss of the C-terminus of connexin43 limits microtubule plus-end capture and NaV1.5 localization at the intercalated disc.
Cardiovasc. Res.,
2014
Nov
1
, 104 (371-81).
258
Savio-Galimberti E
et al.
SCN10A/Nav1.8 modulation of peak and late sodium currents in patients with early onset atrial fibrillation.
Cardiovasc. Res.,
2014
Nov
1
, 104 (355-63).
259
Baskar S
et al.
Compound heterozygous mutations in the SCN5A-encoded Nav1.5 cardiac sodium channel resulting in atrial standstill and His-Purkinje system disease.
J. Pediatr.,
2014
Nov
, 165 (1050-2).
260
Waxman SG
et al.
Sodium channel genes in pain-related disorders: phenotype-genotype associations and recommendations for clinical use.
Lancet Neurol,
2014
Nov
, 13 (1152-60).
261
Singh RR
et al.
Mutations in SCN4A: a rare but treatable cause of recurrent life-threatening laryngospasm.
Pediatrics,
2014
Nov
, 134 (e1447-50).
262
Beltran-Alvarez P
et al.
Identification of N-terminal protein acetylation and arginine methylation of the voltage-gated sodium channel in end-stage heart failure human heart.
J. Mol. Cell. Cardiol.,
2014
Nov
, 76 (126-9).
263
de Kovel CG
et al.
Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy.
Epilepsy Res.,
2014
Nov
, 108 (1511-8).
264
Xu L
et al.
Functional characterization of two novel scorpion sodium channel toxins from Lychas mucronatus.
Toxicon,
2014
Nov
, 90 (318-25).
265
McGlothlin JW
et al.
Parallel evolution of tetrodotoxin resistance in three voltage-gated sodium channel genes in the garter snake Thamnophis sirtalis.
Mol. Biol. Evol.,
2014
Nov
, 31 (2836-46).
266
Mansouri M
et al.
A novel nonsense mutation in SCN9A in a Moroccan child with congenital insensitivity to pain.
Pediatr. Neurol.,
2014
Nov
, 51 (741-4).
267
Frolov RV
et al.
Celecoxib and ion channels: a story of unexpected discoveries.
Eur. J. Pharmacol.,
2014
May
5
, 730 (61-71).
268
Baek JH
et al.
Reciprocal Changes in Phosphorylation and Methylation of Mammalian Brain Sodium Channels in Response to Seizures.
J. Biol. Chem.,
2014
May
30
, 289 (15363-15373).
269
Kiss T
et al.
Down regulation of sodium channels in the central nervous system of hibernating snails.
Physiol. Behav.,
2014
May
28
, 131 (93-8).
270
Baptista-Hon DT
et al.
Potent inhibition by ropivacaine of metastatic colon cancer SW620 cell invasion and NaV1.5 channel function.
Br J Anaesth,
2014
May
22
, ().
271
Tan ZY
et al.
Tetrodotoxin-resistant sodium channels in sensory neurons generate slow resurgent currents that are enhanced by inflammatory mediators.
J. Neurosci.,
2014
May
21
, 34 (7190-7).
272
Gilchrist J
et al.
Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents.
ACS Chem. Biol.,
2014
May
16
, 9 (1204-12).
273
Klint JK
et al.
Isolation, synthesis and characterization of ω-TRTX-Cc1a, a novel tarantula venom peptide that selectively targets L-type Cav channels.
Biochem. Pharmacol.,
2014
May
15
, 89 (276-86).
274
Zhang YY
et al.
Characterization of functional ion channels in human cardiac c-kit+ progenitor cells.
Basic Res. Cardiol.,
2014
May
, 109 (407).
275
Wang GK
et al.
Block of human cardiac sodium channels by lacosamide: evidence for slow drug binding along the activation pathway.
Mol. Pharmacol.,
2014
May
, 85 (692-702).
276
Han C
et al.
The G1662S NaV1.8 mutation in small fibre neuropathy: impaired inactivation underlying DRG neuron hyperexcitability.
J. Neurol. Neurosurg. Psychiatr.,
2014
May
, 85 (499-505).
277
Holzherr B
et al.
A gating model for wildtype and R1448H Nav1.4 channels in paramyotonia.
Acta Myol,
2014
May
, 33 (22-33).
278
Pless SA
et al.
Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains.
J. Gen. Physiol.,
2014
May
, 143 (645-56).
279
Dhamija R
et al.
Sleep abnormalities in children with Dravet syndrome.
Pediatr. Neurol.,
2014
May
, 50 (474-8).
280
Lin CR
et al.
Intrathecal miR-183 delivery suppresses mechanical allodynia in mononeuropathic rats.
Eur. J. Neurosci.,
2014
May
, 39 (1682-9).
281
Garrison SR
et al.
A gain-of-function voltage-gated sodium channel 1.8 mutation drives intense hyperexcitability of A- and C-fiber neurons.
Pain,
2014
May
, 155 (896-905).
282
Gui J
et al.
A tarantula-venom peptide antagonizes the TRPA1 nociceptor ion channel by binding to the S1-S4 gating domain.
Curr. Biol.,
2014
Mar
3
, 24 (473-83).
283
Zidar N
et al.
Substituted 4-phenyl-2-aminoimidazoles and 4-phenyl-4,5-dihydro-2-aminoimidazoles as voltage-gated sodium channel modulators.
Eur J Med Chem,
2014
Mar
3
, 74 (23-30).
284
Chen R
et al.
Mechanism of tetrodotoxin block and resistance in sodium channels.
Biochem. Biophys. Res. Commun.,
2014
Mar
28
, 446 (370-4).
285
Thériault O
et al.
Modulation of peripheral Na(+) channels and neuronal firing by n-butyl-p-aminobenzoate.
Eur. J. Pharmacol.,
2014
Mar
15
, 727 (158-66).
286
Kaczmarski JA
et al.
Investigating the size and dynamics of voltage-gated sodium channel fenestrations: A molecular dynamics study.
Channels (Austin),
2014
Mar
14
, 8 ().
287
Cerrone M
et al.
Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype.
Circulation,
2014
Mar
11
, 129 (1092-103).
288
Okura D
et al.
The endocannabinoid anandamide inhibits voltage-gated sodium channels Nav1.2, Nav1.6, Nav1.7, and Nav1.8 in Xenopus oocytes.
Anesth. Analg.,
2014
Mar
, 118 (554-62).
289
Black JA
et al.
Nav1.9 expression in magnocellular neurosecretory cells of supraoptic nucleus.
Exp. Neurol.,
2014
Mar
, 253 (174-9).
290
Matalon D
et al.
Confirming an expanded spectrum of SCN2A mutations: a case series.
Epileptic Disord,
2014
Mar
, 16 (13-8).
291
Elíes J
et al.
Inhibition of the cardiac Na⁺ channel Nav1.5 by carbon monoxide.
J. Biol. Chem.,
2014
Jun
6
, 289 (16421-9).
292
Riol-Blanco L
et al.
Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation.
Nature,
2014
Jun
5
, 510 (157-61).
293
Lee JH
et al.
A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief.
Cell,
2014
Jun
5
, 157 (1393-404).
294
Boczek NJ
et al.
Characterization of SEMA3A-Encoded Semaphorin as a Naturally Occurring Kv4.3 Protein Inhibitor and its Contribution to Brugada Syndrome.
Circ. Res.,
2014
Jun
24
, ().
295
Coleman N
et al.
New Positive KCa Channel Gating Modulators with Selectivity for KCa3.1.
Mol. Pharmacol.,
2014
Jun
23
, ().
296
Chen WN
et al.
Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia.
Mol Pain,
2014
Jun
23
, 10 (40).
297
Xia L
et al.
Upregulation of Nav1.8 in Demyelinated Facial Nerves Might be Relevant to the Generation of Hemifacial Spasm.
J Craniofac Surg,
2014
Jun
2
, ().
298
Ben-Johny M
et al.
Conservation of Ca(2+)/Calmodulin Regulation across Na and Ca(2+) Channels.
Cell,
2014
Jun
19
, 157 (1657-70).
299
Lukacs P
et al.
Exploring the Structure of the Voltage-Gated Na+ Channel by an Engineered Drug Access Pathway to the Receptor Site for Local Anesthetics.
J. Biol. Chem.,
2014
Jun
19
, ().
300
Nutter TJ
et al.
Persistent modification of Nav1.9 following chronic exposure to insecticides and pyridostigmine bromide.
Toxicol. Appl. Pharmacol.,
2014
Jun
15
, 277 (298-309).
301
Bagnéris C
et al.
Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism.
Proc. Natl. Acad. Sci. U.S.A.,
2014
Jun
10
, 111 (8428-33).
302
Lucas B
et al.
Contractile abnormalities of mouse muscles expressing hyperkalemic periodic paralysis mutant NaV1.4 channels do not correlate with Na+ influx or channel content.
Physiol. Genomics,
2014
Jun
1
, 46 (385-97).
303
Qi B
et al.
Nav1.8 channels in ganglionated plexi modulate atrial fibrillation inducibility.
Cardiovasc. Res.,
2014
Jun
1
, 102 (480-6).
304
Sidaway P
Pain: Gain-of-function Nav1.9 mutations are associated with painful peripheral neuropathy.
Nat Rev Neurol,
2014
Jun
, 10 (306).
305
Bennett DL
et al.
Painful and painless channelopathies.
Lancet Neurol,
2014
Jun
, 13 (587-99).
306
Zhang H
et al.
Enhanced excitability of primary sensory neurons and altered gene expression of neuronal ion channels in dorsal root ganglion in paclitaxel-induced peripheral neuropathy.
Anesthesiology,
2014
Jun
, 120 (1463-75).
307
Zeng T
et al.
A novel variant in the 3' UTR of human SCN1A gene from a patient with Dravet syndrome decreases mRNA stability mediated by GAPDH's binding.
Hum. Genet.,
2014
Jun
, 133 (801-11).
308
Zeng Q
et al.
[Src family kinases affect the expression of Nav1.1 in spiral ganglion neurons].
Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi,
2014
Jun
, 28 (789-92).
309
Yin G
et al.
Arrhythmogenic calmodulin mutations disrupt intracellular cardiomyocyte Ca2+ regulation by distinct mechanisms.
J Am Heart Assoc,
2014
Jun
, 3 (e000996).
310
Huang J
et al.
Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy.
Brain,
2014
Jun
, 137 (1627-42).
311
Xing D
et al.
Expression of neonatal Nav1.5 in human brain astrocytoma and its effect on proliferation, invasion and apoptosis of astrocytoma cells.
Oncol. Rep.,
2014
Jun
, 31 (2692-700).
312
Foadi N
et al.
Inhibition of voltage-gated Na⁺ channels by the synthetic cannabinoid ajulemic acid.
Anesth. Analg.,
2014
Jun
, 118 (1238-45).
313
Alday A
et al.
Ionic channels underlying the ventricular action potential in zebrafish embryo.
Pharmacol. Res.,
2014
Jun
, 84 (26-31).
314
Beyder A
et al.
Loss-of-function of the voltage-gated sodium channel NaV1.5 (channelopathies) in patients with irritable bowel syndrome.
Gastroenterology,
2014
Jun
, 146 (1659-68).
315
Ziyadeh-Isleem A
et al.
A truncating SCN5A mutation combined with genetic variability causes sick sinus syndrome and early atrial fibrillation.
Heart Rhythm,
2014
Jun
, 11 (1015-23).
316
Liang J
et al.
Blockade of Nav1.8 currents in nociceptive trigeminal neurons contributes to anti-trigeminovascular nociceptive effect of amitriptyline.
Neuromolecular Med.,
2014
Jun
, 16 (308-21).
317
Hu D
et al.
Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome.
J. Am. Coll. Cardiol.,
2014
Jul
8
, 64 (66-79).
318
Shy D
et al.
PDZ domain-binding motif regulates cardiomyocyte compartment-specific NaV1.5 channel expression and function.
Circulation,
2014
Jul
8
, 130 (147-60).
319
Tai C
et al.
Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome.
Proc. Natl. Acad. Sci. U.S.A.,
2014
Jul
29
, 111 (E3139-48).
320
Dybkova N
et al.
Tubulin polymerization disrupts cardiac β-adrenergic regulation of late INa.
Cardiovasc. Res.,
2014
Jul
1
, 103 (168-77).
321
Oliva MK
et al.
Physiological and genetic analysis of multiple sodium channel variants in a model of genetic absence epilepsy.
Neurobiol. Dis.,
2014
Jul
, 67 (180-90).
322
Riuró H
et al.
A missense mutation in the sodium channel β1b subunit reveals SCN1B as a susceptibility gene underlying long QT syndrome.
Heart Rhythm,
2014
Jul
, 11 (1202-9).
323
Lee JH
et al.
Metergoline inhibits the neuronal Nav1.2 voltage-dependent Na(+) channels expressed in Xenopus oocytes.
Acta Pharmacol. Sin.,
2014
Jul
, 35 (862-8).
324
Minett MS
et al.
Pain without nociceptors? Nav1.7-independent pain mechanisms.
Cell Rep,
2014
Jan
30
, 6 (301-12).
325
Barry J
et al.
Ankyrin-G directly binds to kinesin-1 to transport voltage-gated Na+ channels into axons.
Dev. Cell,
2014
Jan
27
, 28 (117-31).
326
Martins RP
et al.
Dominant Frequency Increase Rate Predicts Transition from Paroxysmal to Long-Term Persistent Atrial Fibrillation.
Circulation,
2014
Jan
24
, ().
327
Eberhardt M
et al.
Inherited pain: sodium channel Nav1.7 A1632T mutation causes erythromelalgia due to a shift of fast inactivation.
J. Biol. Chem.,
2014
Jan
24
, 289 (1971-80).
328
Isensee J
et al.
Pain modulators regulate the dynamics of PKA-RII phosphorylation in subgroups of sensory neurons.
J. Cell. Sci.,
2014
Jan
1
, 127 (216-29).
329
Kahlig KM
et al.
Ranolazine reduces neuronal excitability by interacting with inactivated States of brain sodium channels.
Mol. Pharmacol.,
2014
Jan
, 85 (162-74).
330
Baroni D
et al.
Antisense-mediated post-transcriptional silencing of SCN1B gene modulates sodium channel functional expression.
Biol. Cell,
2014
Jan
, 106 (13-29).
331
Chen HP
et al.
Intrathecal miR-96 inhibits Nav1.3 expression and alleviates neuropathic pain in rat following chronic construction injury.
Neurochem. Res.,
2014
Jan
, 39 (76-83).
332
Shorer Z
et al.
A novel mutation in SCN9A in a child with congenital insensitivity to pain.
Pediatr. Neurol.,
2014
Jan
, 50 (73-6).
333
Matsushita N
et al.
Nicorandil improves electrical remodelling, leading to the prevention of electrically induced ventricular tachyarrhythmia in a mouse model of desmin-related cardiomyopathy.
Clin. Exp. Pharmacol. Physiol.,
2014
Jan
, 41 (89-97).
334
Gajewiak J
et al.
A disulfide tether stabilizes the block of sodium channels by the conotoxin μO§-GVIIJ.
Proc. Natl. Acad. Sci. U.S.A.,
2014
Feb
18
, 111 (2758-63).
335
Huang XJ
et al.
Blockage of the upregulation of voltage-gated sodium channel nav1.3 improves outcomes after experimental traumatic brain injury.
J. Neurotrauma,
2014
Feb
15
, 31 (346-57).
336
Tamura R
et al.
Up-regulation of NaV1.7 sodium channels expression by tumor necrosis factor-α in cultured bovine adrenal chromaffin cells and rat dorsal root ganglion neurons.
Anesth. Analg.,
2014
Feb
, 118 (318-24).
337
Dulong C
et al.
The small GTPase RhoA regulates the expression and function of the sodium channel Nav1.5 in breast cancer cells.
Int. J. Oncol.,
2014
Feb
, 44 (539-47).
338
Muroi Y
et al.
Targeting voltage gated sodium channels NaV1.7, Na V1.8, and Na V1.9 for treatment of pathological cough.
Lung,
2014
Feb
, 192 (15-20).
339
Mukai M
et al.
Evaluation of behavior and expression of NaV1.7 in dorsal root ganglia after sciatic nerve compression and application of nucleus pulposus in rats.
Eur Spine J,
2014
Feb
, 23 (463-8).
340
Vanoye CG
et al.
Novel SCN3A variants associated with focal epilepsy in children.
Neurobiol. Dis.,
2014
Feb
, 62 (313-22).
341
Cheng KI
et al.
Persistent mechanical allodynia positively correlates with an increase in activated microglia and increased P-p38 mitogen-activated protein kinase activation in streptozotocin-induced diabetic rats.
Eur J Pain,
2014
Feb
, 18 (162-73).
342
Xu L
et al.
[Expression of voltage gated sodium channel Nav1.9 in experimental pulpal lesions in the rats].
Zhonghua Kou Qiang Yi Xue Za Zhi,
2014
Feb
, 49 (95-100).
343
Wei P
et al.
Jingzhaotoxin-35, a novel gating-modifier toxin targeting both Nav1.5 and Kv2.1 channels.
Toxicon,
2014
Dec
15
, 92 (90-6).
344
Schroder EA
et al.
Light phase-restricted feeding slows basal heart rate to exaggerate the type-3 long QT syndrome phenotype in mice.
Am. J. Physiol. Heart Circ. Physiol.,
2014
Dec
15
, 307 (H1777-85).
345
Tang C
et al.
The tarantula toxin jingzhaotoxin-XI (κ-theraphotoxin-Cj1a) regulates the activation and inactivation of the voltage-gated sodium channel Nav1.5.
Toxicon,
2014
Dec
15
, 92 (6-13).
346
Savio-Galimberti E
et al.
Atrial Fibrillation and SCN5A Variants.
Card Electrophysiol Clin,
2014
Dec
1
, 6 (741-748).
347
Corrochano S
et al.
Novel mutations in human and mouse SCN4A implicate AMPK in myotonia and periodic paralysis.
Brain,
2014
Dec
, 137 (3171-85).
348
Swan H
et al.
Gain-of-function mutation of the SCN5A gene causes exercise-induced polymorphic ventricular arrhythmias.
Circ Cardiovasc Genet,
2014
Dec
, 7 (771-81).
349
Yang Q
et al.
Persistent pain after spinal cord injury is maintained by primary afferent activity.
J. Neurosci.,
2014
Aug
6
, 34 (10765-9).
350
Huang WF
et al.
Role of sodium channels in the spontaneous excitability of early embryonic cardiomyocytes.
Chin J Physiol,
2014
Aug
31
, 57 (188-97).
351
Magdaleno-Méndez A
et al.
Ghrelin increases growth hormone production and functional expression of NaV1.1 and Na V1.2 channels in pituitary somatotropes.
Endocrine,
2014
Aug
24
, ().
352
Lin X
et al.
Scn1b deletion leads to increased tetrodotoxin-sensitive sodium current, altered intracellular calcium homeostasis and arrhythmias in murine hearts.
J. Physiol. (Lond.),
2014
Aug
15
, ().
353
Park JH
et al.
Studies examining the relationship between the chemical structure of protoxin II and its activity on voltage gated sodium channels.
J. Med. Chem.,
2014
Aug
14
, 57 (6623-31).
354
Spencer CI
et al.
Calcium transients closely reflect prolonged action potentials in iPSC models of inherited cardiac arrhythmia.
Stem Cell Reports,
2014
Aug
12
, 3 (269-81).
355
Bouafia A
et al.
Axonal expression of sodium channels and neuropathology of the plaques in multiple sclerosis.
Neuropathol. Appl. Neurobiol.,
2014
Aug
, 40 (579-90).
356
Zhang H
et al.
Voltage-dependent blockade by bupivacaine of cardiac sodium channels expressed in Xenopus oocytes.
Neurosci Bull,
2014
Aug
, 30 (697-710).
357
Liu Y
et al.
Synthesis and analgesic effects of μ-TRTX-Hhn1b on models of inflammatory and neuropathic pain.
Toxins (Basel),
2014
Aug
, 6 (2363-78).
358
Alexandrou AJ
et al.
The human ether-a'-go-go related gene (hERG) K+ channel blockade by the investigative selective-serotonin reuptake inhibitor CONA-437: limited dependence on S6 aromatic residues.
J. Physiol. Pharmacol.,
2014
Aug
, 65 (511-23).
359
Mi W
et al.
Disrupted coupling of gating charge displacement to Na+ current activation for DIIS4 mutations in hypokalemic periodic paralysis.
J. Gen. Physiol.,
2014
Aug
, 144 (137-45).
360
Beckermann TM
et al.
Novel SCN5A mutation in amiodarone-responsive multifocal ventricular ectopy-associated cardiomyopathy.
Heart Rhythm,
2014
Aug
, 11 (1446-53).
361
Pambrun T
et al.
Myotonic dystrophy type 1 mimics and exacerbates Brugada phenotype induced by Nav1.5 sodium channel loss-of-function mutation.
Heart Rhythm,
2014
Aug
, 11 (1393-400).
362
Makinson CD
et al.
Role of the hippocampus in Nav1.6 (Scn8a) mediated seizure resistance.
Neurobiol. Dis.,
2014
Aug
, 68 (16-25).
363
Osorio N
et al.
Specialized functions of Nav1.5 and Nav1.9 channels in electrogenesis of myenteric neurons in intact mouse ganglia.
J. Neurosci.,
2014
Apr
9
, 34 (5233-44).
364
Brauner JM
et al.
Risperidone inhibits voltage-gated sodium channels.
Eur. J. Pharmacol.,
2014
Apr
5
, 728 (100-6).
365
Weller CM
et al.
Two novel SCN1A mutations identified in families with familial hemiplegic migraine.
Cephalalgia,
2014
Apr
4
, ().
366
Themistocleous AC
et al.
The clinical approach to small fibre neuropathy and painful channelopathy.
Pract Neurol,
2014
Apr
28
, ().
367
Senatore A
et al.
T-type channels become highly permeable to sodium ions using an alternative extracellular turret region (S5-P) outside the selectivity filter.
J. Biol. Chem.,
2014
Apr
25
, 289 (11952-69).
368
Zhao H
et al.
[Localization and expression pattern of MDM2 in axon initial segments of neuron in rodent brain].
Sheng Li Xue Bao,
2014
Apr
25
, 66 (107-17).
369
Yuan L
et al.
Investigations of the Navβ1b sodium channel subunit in human ventricle; functional characterization of the H162P Brugada syndrome mutant.
Am. J. Physiol. Heart Circ. Physiol.,
2014
Apr
15
, 306 (H1204-12).
370
Abriel H
et al.
Unexpected α-α interactions with NaV1.5 genetic variants in Brugada syndrome.
Circ Cardiovasc Genet,
2014
Apr
1
, 7 (97-9).
371
Sadamasu A
et al.
Upregulation of NaV1.7 in dorsal root ganglia after intervertebral disc injury in rats.
Spine,
2014
Apr
1
, 39 (E421-6).
372
Groome JR
et al.
NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery.
Brain,
2014
Apr
, 137 (998-1008).
373
Senatore A
et al.
Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity.
Pflugers Arch.,
2014
Apr
, 466 (645-60).
374
Kruse M
et al.
TRPM4 channels in the cardiovascular system.
Curr Opin Pharmacol,
2014
Apr
, 15 (68-73).
375
Zhao Z
et al.
Protective effects of aliskiren on atrial ionic remodeling in a canine model of rapid atrial pacing.
Cardiovasc Drugs Ther,
2014
Apr
, 28 (137-43).
376
Vasylyev DV
et al.
Dynamic-clamp analysis of wild-type human Nav1.7 and erythromelalgia mutant channel L858H.
J. Neurophysiol.,
2014
Apr
, 111 (1429-43).
377
Delaney JT
et al.
Common SCN10A variants modulate PR interval and heart rate response during atrial fibrillation.
Europace,
2014
Apr
, 16 (485-90).
378
Sivagangabalan G
et al.
Regional ion channel gene expression heterogeneity and ventricular fibrillation dynamics in human hearts.
PLoS ONE,
2014
, 9 (e82179).
379
Liu Z
et al.
Repeated functional convergent effects of NaV1.7 on acid insensitivity in hibernating mammals.
Proc. Biol. Sci.,
2014
, 281 (20132950).
380
Moreau A
et al.
Biophysics, pathophysiology, and pharmacology of ion channel gating pores.
Front Pharmacol,
2014
, 5 (53).
381
Inada S
et al.
Importance of gradients in membrane properties and electrical coupling in sinoatrial node pacing.
PLoS ONE,
2014
, 9 (e94565).
382
Laedermann CJ
et al.
Ubiquitylation of voltage-gated sodium channels.
Handb Exp Pharmacol,
2014
, 221 (231-50).
383
Meng E
et al.
Screening for voltage-gated sodium channel interacting peptides.
Sci Rep,
2014
, 4 (4569).
384
Rudokas MW
et al.
The Xenopus oocyte cut-open vaseline gap voltage-clamp technique with fluorometry.
J Vis Exp,
2014
, ().
385
Hsieh JY
et al.
Rapid development of Purkinje cell excitability, functional cerebellar circuit, and afferent sensory input to cerebellum in zebrafish.
Front Neural Circuits,
2014
, 8 (147).
386
Thakur M
et al.
Defining the nociceptor transcriptome.
Front Mol Neurosci,
2014
, 7 (87).
387
Wang C
et al.
Structural basis of diverse membrane target recognitions by ankyrins.
Elife,
2014
, 3 ().
388
Neishabouri A
et al.
Saltatory conduction in unmyelinated axons: clustering of Na(+) channels on lipid rafts enables micro-saltatory conduction in C-fibers.
Front Neuroanat,
2014
, 8 (109).
389
Luo J
et al.
Molecular surface of JZTX-V (β-Theraphotoxin-Cj2a) interacting with voltage-gated sodium channel subtype NaV1.4.
Toxins (Basel),
2014
, 6 (2177-93).
390
Jones DK
et al.
Proton modulation of cardiac I Na: a potential arrhythmogenic trigger.
Handb Exp Pharmacol,
2014
, 221 (169-81).
391
Lampert A
et al.
Altered sodium channel gating as molecular basis for pain: contribution of activation, inactivation, and resurgent currents.
Handb Exp Pharmacol,
2014
, 221 (91-110).
392
Vreeker A
et al.
Assembly of the cardiac intercalated disk during pre- and postnatal development of the human heart.
PLoS ONE,
2014
, 9 (e94722).
393
Zhao R
et al.
PKC-NF-κB are involved in CCL2-induced Nav1.8 expression and channel function in dorsal root ganglion neurons.
Biosci. Rep.,
2014
, 34 ().
394
Belkouch M
et al.
Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation.
J Neuroinflammation,
2014
, 11 (45).
395
Fontes MS
et al.
Changes in Cx43 and NaV1.5 expression precede the occurrence of substantial fibrosis in calcineurin-induced murine cardiac hypertrophy.
PLoS ONE,
2014
, 9 (e87226).
396
He B
et al.
Functional expression of Rat Nav1.6 voltage-gated sodium channels in HEK293 cells: modulation by the auxiliary β1 subunit.
PLoS ONE,
2014
, 9 (e85188).
397
Zimmer T
et al.
Voltage-gated sodium channels in the mammalian heart.
Glob Cardiol Sci Pract,
2014
, 2014 (449-63).
398
Kim DY
et al.
The E280A presenilin mutation reduces voltage-gated sodium channel levels in neuronal cells.
Neurodegener Dis,
2014
, 13 (64-8).
399
Korogod SM
et al.
Dynamic excitation states and firing patterns are controlled by sodium channel kinetics in myenteric neurons: a simulation study.
Channels (Austin),
2014
, 8 (536-43).
400
Cao J
et al.
Intrathecal injection of fluorocitric acid inhibits the activation of glial cells causing reduced mirror pain in rats.
BMC Anesthesiol,
2014
, 14 (119).
401
Mahdavi S
et al.
Systematic study of binding of μ-conotoxins to the sodium channel NaV1.4.
Toxins (Basel),
2014
, 6 (3454-70).
402
Liu XD
et al.
Functional upregulation of nav1.8 sodium channels on the membrane of dorsal root Ganglia neurons contributes to the development of cancer-induced bone pain.
PLoS ONE,
2014
, 9 (e114623).
403
Driffort V
et al.
Ranolazine inhibits NaV1.5-mediated breast cancer cell invasiveness and lung colonization.
Mol. Cancer,
2014
, 13 (264).
404
Amarouch MY
et al.
Functional interaction between S1 and S4 segments in voltage-gated sodium channels revealed by human channelopathies.
Channels (Austin),
2014
, 8 (414-20).
405
Wang ZJ
et al.
Resibufogenin and cinobufagin activate central neurons through an ouabain-like action.
PLoS ONE,
2014
, 9 (e113272).
406
Béziau DM
et al.
Complex Brugada syndrome inheritance in a family harbouring compound SCN5A and CACNA1C mutations.
Basic Res. Cardiol.,
2014
, 109 (446).
407
Lakomá J
et al.
Pain related channels are differentially expressed in neuronal and non-neuronal cells of glabrous skin of fabry knockout male mice.
PLoS ONE,
2014
, 9 (e108641).
408
Christidis N
et al.
Expression of 5-HT3 receptors and TTX resistant sodium channels (Na(V)1.8) on muscle nerve fibers in pain-free humans and patients with chronic myofascial temporomandibular disorders.
J Headache Pain,
2014
, 15 (63).
409
Gingras J
et al.
Global Nav1.7 knockout mice recapitulate the phenotype of human congenital indifference to pain.
PLoS ONE,
2014
, 9 (e105895).
410
Bende NS
et al.
A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a.
Nat Commun,
2014
, 5 (4350).
411
Magot A
et al.
Focal and abnormally persistent paralysis associated with congenital paramyotonia.
BMJ Case Rep,
2014
, 2014 ().
412
Gabelli SB
et al.
Regulation of the NaV1.5 cytoplasmic domain by calmodulin.
Nat Commun,
2014
, 5 (5126).
413
Petersson ME
et al.
Differential axonal conduction patterns of mechano-sensitive and mechano-insensitive nociceptors--a combined experimental and modelling study.
PLoS ONE,
2014
, 9 (e103556).
414
Mahdavi S
et al.
Molecular dynamics study of binding of µ-conotoxin GIIIA to the voltage-gated sodium channel Na(v)1.4.
PLoS ONE,
2014
, 9 (e105300).
415
Minett MS
et al.
Significant determinants of mouse pain behaviour.
PLoS ONE,
2014
, 9 (e104458).
416
Chen R
et al.
Mechanism of μ-conotoxin PIIIA binding to the voltage-gated Na+ channel NaV1.4.
PLoS ONE,
2014
, 9 (e93267).
417
Liu ZR
et al.
PKA phosphorylation reshapes the pharmacological kinetics of BmK AS, a unique site-4 sodium channel-specific modulator.
Sci Rep,
2014
, 4 (3721).
418
Ricci MT
et al.
SCN1B gene variants in Brugada Syndrome: a study of 145 SCN5A-negative patients.
Sci Rep,
2014
, 4 (6470).
419
Chen W
et al.
Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique.
Sci Rep,
2014
, 4 (5404).
420
Abdelsayed M
et al.
Voltage-gated sodium channels: pharmaceutical targets via anticonvulsants to treat epileptic syndromes.
Channels (Austin),
2013 May-Jun
, 7 (146-52).
421
Elkins RC
et al.
Variability in high-throughput ion-channel screening data and consequences for cardiac safety assessment.
J Pharmacol Toxicol Methods,
2013 Jul-Aug
, 68 (112-22).
422
Morissette P
et al.
The anesthetized guinea pig: An effective early cardiovascular derisking and lead optimization model.
J Pharmacol Toxicol Methods,
2013 Jul-Aug
, 68 (137-49).
423
Qu Y
et al.
Human embryonic stem cell derived cardiac myocytes detect hERG-mediated repolarization effects, but not Nav1.5 induced depolarization delay.
J Pharmacol Toxicol Methods,
2013 Jul-Aug
, 68 (74-81).
424
Wang GK
et al.
Persistent human cardiac Na+ currents in stably transfected mammalian cells: Robust expression and distinct open-channel selectivity among Class 1 antiarrhythmics.
Channels (Austin),
2013 Jul-Aug
, 7 (263-74).
425
Chiu IM
et al.
Bacteria activate sensory neurons that modulate pain and inflammation.
Nature,
2013
Sep
5
, 501 (52-7).
426
Ahn HS
et al.
Differential effect of D623N variant and wild-type Na(v)1.7 sodium channels on resting potential and interspike membrane potential of dorsal root ganglion neurons.
Brain Res.,
2013
Sep
5
, 1529 (165-77).
427
Baczkó I
et al.
Characterization of a novel multi-functional resveratrol derivative for the treatment of atrial fibrillation.
Br. J. Pharmacol.,
2013
Sep
18
, ().
428
Chen J
et al.
Neurological and cellular regulation of visceral hypersensitivity induced by chronic stress and colonic inflammation in rats.
Neuroscience,
2013
Sep
17
, 248 (469-78).
429
Leipold E
et al.
A de novo gain-of-function mutation in SCN11A causes loss of pain perception.
Nat. Genet.,
2013
Sep
15
, ().
430
Pérez-Medina C
et al.
Synthesis and evaluation of a 125I-labeled iminodihydroquinoline-derived tracer for imaging of voltage-gated sodium channels.
Bioorg. Med. Chem. Lett.,
2013
Sep
15
, 23 (5170-3).
431
Hernãndez-Ochoa EO
et al.
Elevated nuclear Foxo1 suppresses excitability of skeletal muscle fibers.
Am. J. Physiol., Cell Physiol.,
2013
Sep
15
, 305 (C643-53).
432
Washburn DG
et al.
The discovery of potent blockers of the canonical transient receptor channels, TRPC3 and TRPC6, based on an anilino-thiazole pharmacophore.
Bioorg. Med. Chem. Lett.,
2013
Sep
1
, 23 (4979-84).
433
Shryock JC
et al.
The arrhythmogenic consequences of increasing late INa in the cardiomyocyte.
Cardiovasc. Res.,
2013
Sep
1
, 99 (600-11).
434
King JH
et al.
Loss of Nav1.5 expression and function in murine atria containing the RyR2-P2328S gain-of-function mutation.
Cardiovasc. Res.,
2013
Sep
1
, 99 (751-9).
435
Oliveira EE
et al.
A residue in the transmembrane segment 6 of domain I in insect and mammalian sodium channels regulate differential sensitivities to pyrethroid insecticides.
Neurotoxicology,
2013
Sep
, 38 (42-50).
436
Zhu L
et al.
Two recombinant α-like scorpion toxins from Mesobuthus eupeus with differential affinity toward insect and mammalian Na(+) channels.
Biochimie,
2013
Sep
, 95 (1732-40).
437
Shen KF
et al.
Interleukin-10 down-regulates voltage gated sodium channels in rat dorsal root ganglion neurons.
Exp. Neurol.,
2013
Sep
, 247 (466-75).
438
Lewis AH
et al.
Interactions among DIV voltage-sensor movement, fast inactivation, and resurgent Na current induced by the NaVβ4 open-channel blocking peptide.
J. Gen. Physiol.,
2013
Sep
, 142 (191-206).
439
Xiao M
et al.
FGF14 localization and organization of the axon initial segment.
Mol. Cell. Neurosci.,
2013
Sep
, 56 (393-403).
440
Qiao X
et al.
Expression of sodium channel α subunits 1.1, 1.2 and 1.6 in rat hippocampus after kainic acid-induced epilepsy.
Epilepsy Res.,
2013
Sep
, 106 (17-28).
441
Zhang Q
et al.
Silencing of desmoplakin decreases connexin43/Nav1.5 expression and sodium current in HL‑1 cardiomyocytes.
Mol Med Rep,
2013
Sep
, 8 (780-6).
442
Wu Z
et al.
Full-length membrane-bound tumor necrosis factor-α acts through tumor necrosis factor receptor 2 to modify phenotype of sensory neurons.
Pain,
2013
Sep
, 154 (1778-82).
443
Deuis JR
et al.
An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways.
Pain,
2013
Sep
, 154 (1749-57).
444
Puthussery T
et al.
NaV1.1 channels in axon initial segments of bipolar cells augment input to magnocellular visual pathways in the primate retina.
J. Neurosci.,
2013
Oct
9
, 33 (16045-59).
445
446
Rowe AH
et al.
Voltage-gated sodium channel in grasshopper mice defends against bark scorpion toxin.
Science,
2013
Oct
25
, 342 (441-6).
447
Cestèle S
et al.
Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of function by partial rescue of folding defects.
Proc. Natl. Acad. Sci. U.S.A.,
2013
Oct
22
, 110 (17546-51).
448
Yang S
et al.
Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models.
Proc. Natl. Acad. Sci. U.S.A.,
2013
Oct
22
, 110 (17534-9).
449
Black JA
et al.
Noncanonical roles of voltage-gated sodium channels.
Neuron,
2013
Oct
16
, 80 (280-91).
450
Sheets MF
et al.
Outward stabilization of the voltage sensor in domain II but not domain I speeds inactivation of voltage-gated sodium channels.
Am. J. Physiol. Heart Circ. Physiol.,
2013
Oct
15
, 305 (H1213-21).
451
Ma D
et al.
Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells.
Int. J. Cardiol.,
2013
Oct
15
, 168 (5277-86).
452
Beltran-Alvarez P
et al.
Protein arginine methyl transferases-3 and -5 increase cell surface expression of cardiac sodium channel.
FEBS Lett.,
2013
Oct
1
, 587 (3159-65).
453
Sandalon S
et al.
Functional and structural evaluation of lamotrigine treatment in rat models of acute and chronic ocular hypertension.
Exp. Eye Res.,
2013
Oct
, 115 (47-56).
454
Eleawa SM
et al.
Effect of testosterone replacement therapy on cardiac performance and oxidative stress in orchidectomized rats.
Acta Physiol (Oxf),
2013
Oct
, 209 (136-47).
455
Wu M
et al.
A naturally occurring amino acid substitution in the voltage-dependent sodium channel selectivity filter affects channel gating.
J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol.,
2013
Oct
, 199 (829-42).
456
Zhang XY
et al.
Gain-of-function mutations in SCN11A cause familial episodic pain.
Am. J. Hum. Genet.,
2013
Nov
7
, 93 (957-66).
457
Su YY
et al.
KIF5B promotes the forward transport and axonal function of the voltage-gated sodium channel Nav1.8.
J. Neurosci.,
2013
Nov
6
, 33 (17884-96).
458
Abbasi S
et al.
Introducing treatment strategy for cerebellar ataxia in mutant med mice: Combination of acetazolamide and 4-Aminopyridine.
Comput Methods Programs Biomed,
2013
Nov
24
, ().
459
Daou I
et al.
Remote optogenetic activation and sensitization of pain pathways in freely moving mice.
J. Neurosci.,
2013
Nov
20
, 33 (18631-40).
460
Marsman RF
et al.
Coxsackie and adenovirus receptor (CAR) is a modifier of cardiac conduction and arrhythmia vulnerability in the setting of myocardial ischemia.
J. Am. Coll. Cardiol.,
2013
Nov
18
, ().
461
Zhao ZQ
et al.
Chronic itch development in sensory neurons requires BRAF signaling pathways.
J. Clin. Invest.,
2013
Nov
1
, 123 (4769-80).
462
Brisson L
et al.
NaV1.5 Na⁺ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia.
J. Cell. Sci.,
2013
Nov
1
, 126 (4835-42).
463
Jiao J
et al.
Modeling Dravet syndrome using induced pluripotent stem cells (iPSCs) and directly converted neurons.
Hum. Mol. Genet.,
2013
Nov
1
, 22 (4241-52).
464
Cox JJ
et al.
No pain, more gain.
Nat. Genet.,
2013
Nov
, 45 (1271-2).
465
Fedele F
et al.
Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease.
Basic Res. Cardiol.,
2013
Nov
, 108 (387).
466
Nadrowitz F
et al.
The distinct effects of lipid emulsions used for "lipid resuscitation" on gating and bupivacaine-induced inhibition of the cardiac sodium channel Nav1.5.
Anesth. Analg.,
2013
Nov
, 117 (1101-8).
467
Westenbroek RE
et al.
Localization of sodium channel subtypes in mouse ventricular myocytes using quantitative immunocytochemistry.
J. Mol. Cell. Cardiol.,
2013
Nov
, 64 (69-78).
468
Koenig X
et al.
Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile.
Toxicol. Appl. Pharmacol.,
2013
May
22
, ().
469
Yang Y
et al.
Molecular architecture of a sodium channel S6 helix: radial tuning of the voltage-gated sodium channel 1.7 activation gate.
J. Biol. Chem.,
2013
May
10
, 288 (13741-7).
470
Groome JR
et al.
S1-S3 counter charges in the voltage sensor module of a mammalian sodium channel regulate fast inactivation.
J. Gen. Physiol.,
2013
May
, 141 (601-18).
471
Oakley JC
et al.
Synergistic GABA-enhancing therapy against seizures in a mouse model of Dravet syndrome.
J. Pharmacol. Exp. Ther.,
2013
May
, 345 (215-24).
472
473
Kendel Y
et al.
Venomous secretions from marine snails of the Terebridae family target acetylcholine receptors.
Toxins (Basel),
2013
May
, 5 (1043-50).
474
Kim JJ
et al.
Bradycardia alters Ca(2+) dynamics enhancing dispersion of repolarization and arrhythmia risk.
Am. J. Physiol. Heart Circ. Physiol.,
2013
Mar
15
, 304 (H848-60).
475
Estacion M
et al.
A new Nav1.7 mutation in an erythromelalgia patient.
Biochem. Biophys. Res. Commun.,
2013
Mar
1
, 432 (99-104).
476
Luo Y
et al.
[Inhibitory effect of NaV1.9 gene silencing on proliferation, phagocytosis and migration in RAW264.7 cells].
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,
2013
Mar
, 29 (225-8).
477
Yu YQ
et al.
Activation of tetrodotoxin-resistant sodium channel NaV1.9 in rat primary sensory neurons contributes to melittin-induced pain behavior.
Neuromolecular Med.,
2013
Mar
, 15 (209-17).
478
Noorman M
et al.
Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy.
Heart Rhythm,
2013
Mar
, 10 (412-9).
479
Hargus NJ
et al.
Evidence for a Role of Nav1.6 in Facilitating Increases in Neuronal Hyper-excitability During Epileptogenesis.
J. Neurophysiol.,
2013
Jun
5
, ().
480
Driscoll HE
et al.
Pumilio-2 regulates translation of Nav1.6 to mediate homeostasis of membrane excitability.
J. Neurosci.,
2013
Jun
5
, 33 (9644-54).
481
Gao B
et al.
Expression and secretion of functional recombinant μO-conotoxin MrVIB-His-tag in Escherichia coli.
Toxicon,
2013
Jun
27
, 72C (81-89).
482
Morris GM
et al.
Characterisation of a Right Atrial Subsidiary Pacemaker and acceleration of the pacing rate by HCN over-expression.
Cardiovasc. Res.,
2013
Jun
19
, ().
483
Minassian NA
et al.
Analysis of the structural and molecular basis of voltage-sensitive sodium channel inhibition by the spider toxin, Huwentoxin-IV (μ-TRTX-Hh2a).
J. Biol. Chem.,
2013
Jun
12
, ().
484
Rahgozar K
et al.
Mediation of protection and recovery from experimental autoimmune encephalomyelitis by macrophages expressing the human voltage-gated sodium channel NaV1.5.
J. Neuropathol. Exp. Neurol.,
2013
Jun
, 72 (489-504).
485
Liang L
et al.
Protein kinase B/Akt is required for complete Freund's adjuvant-induced upregulation of Nav1.7 and Nav1.8 in primary sensory neurons.
J Pain,
2013
Jun
, 14 (638-47).
486
Revell JD
et al.
Potency optimization of Huwentoxin-IV on hNav1.7: a neurotoxin TTX-S sodium-channel antagonist from the venom of the Chinese bird-eating spider Selenocosmia huwena.
Peptides,
2013
Jun
, 44 (40-6).
487
Bender AC
et al.
Focal Scn1a knockdown induces cognitive impairment without seizures.
Neurobiol. Dis.,
2013
Jun
, 54 (297-307).
488
Cregg R
et al.
Novel mutations mapping to the fourth sodium channel domain of Nav1.7 result in variable clinical manifestations of primary erythromelalgia.
Neuromolecular Med.,
2013
Jun
, 15 (265-78).
489
Nilsson MF
et al.
Comparative effects of sodium channel blockers in short term rat whole embryo culture.
Toxicol. Appl. Pharmacol.,
2013
Jul
8
, ().
490
Shavkunov AS
et al.
The Fibroblast Growth Factor 14{middle dot}Voltage-gated Sodium Channel Complex Is a New Target of Glycogen Synthase Kinase 3 (GSK3).
J. Biol. Chem.,
2013
Jul
5
, 288 (19370-85).
491
Korkmaz S
et al.
Provocation of an autoimmune response to cardiac voltage-gated sodium channel NaV1.5 induces cardiac conduction defects in rats.
J. Am. Coll. Cardiol.,
2013
Jul
23
, 62 (340-9).
492
Jones DK
et al.
Extracellular protons inhibit charge immobilization in the cardiac voltage-gated sodium channel.
Biophys. J.,
2013
Jul
2
, 105 (101-7).
493
Ravens U
et al.
Atrial selectivity of antiarrhythmic drugs.
J. Physiol. (Lond.),
2013
Jul
16
, ().
494
Du Y
et al.
Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel.
Proc. Natl. Acad. Sci. U.S.A.,
2013
Jul
16
, 110 (11785-90).
495
McCormack K
et al.
Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels.
Proc. Natl. Acad. Sci. U.S.A.,
2013
Jul
16
, 110 (E2724-32).
496
Liu Z
et al.
Structure and function of hainantoxin-III, a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels isolated from the Chinese bird spider Ornithoctonus hainana.
J. Biol. Chem.,
2013
Jul
12
, 288 (20392-403).
497
Takanari H
et al.
Efficient and specific cardiac IK1 inhibition by a new pentamidine analogue.
Cardiovasc. Res.,
2013
Jul
1
, 99 (203-14).
498
Tsunozaki M
et al.
A 'toothache tree' alkylamide inhibits Aδ mechanonociceptors to alleviate mechanical pain.
J. Physiol. (Lond.),
2013
Jul
1
, 591 (3325-40).
499
Gillet L
et al.
NaV1.5 and interacting proteins in human arrhythmogenic cardiomyopathy.
Future Cardiol,
2013
Jul
, 9 (467-70).
500
Purcell RH
et al.
Effects of an epilepsy-causing mutation in the SCN1A sodium channel gene on cocaine-induced seizure susceptibility in mice.
Psychopharmacology (Berl.),
2013
Jul
, 228 (263-70).
501
Walewska A
et al.
Expanding chemical diversity of conotoxins: peptoid-peptide chimeras of the sodium channel blocker μ-KIIIA and its selenopeptide analogues.
Eur J Med Chem,
2013
Jul
, 65 (144-50).
502
Jiang N
et al.
Molecular and cellular influences of permethrin on mammalian nociceptors at physiological temperatures.
Neurotoxicology,
2013
Jul
, 37 (207-19).
503
Galloway C
et al.
Increases in inflammatory mediators in DRG implicate in the pathogenesis of painful neuropathy in Type 2 diabetes.
Cytokine,
2013
Jul
, 63 (1-5).
504
Waxman SG
Painful Na-channelopathies: an expanding universe.
Trends Mol Med,
2013
Jul
, 19 (406-9).
505
506
Zhang Q
et al.
[Desmoplakin expression silencing affects cardiac voltage-gated sodium channel Nav1.5 in HL-1 cells].
Nan Fang Yi Ke Da Xue Xue Bao,
2013
Jul
, 33 (983-9).
507
Norinder U
et al.
QSAR investigation of NaV1.7 active compounds using the SVM/Signature approach and the Bioclipse Modeling platform.
Bioorg. Med. Chem. Lett.,
2013
Jan
1
, 23 (261-3).
508
Huang XJ
et al.
Expression of voltage-gated sodium channel Nav1.3 is associated with severity of traumatic brain injury in adult rats.
J. Neurotrauma,
2013
Jan
1
, 30 (39-46).
509
Ramachandra R
et al.
NaV1.8 channels are expressed in large, as well as small, diameter sensory afferent neurons.
Channels (Austin),
2013
Jan
1
, 7 (34-7).
510
Persson AK
et al.
Neuropathy-associated Nav1.7 variant I228M impairs integrity of dorsal root ganglion neuron axons.
Ann. Neurol.,
2013
Jan
, 73 (140-5).
511
Suter MR
et al.
Rufinamide attenuates mechanical allodynia in a model of neuropathic pain in the mouse and stabilizes voltage-gated sodium channel inactivated state.
Anesthesiology,
2013
Jan
, 118 (160-72).
512
Dutton SB
et al.
Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility.
Neurobiol. Dis.,
2013
Jan
, 49 (211-20).
513
Ito S
et al.
Mouse with Nav1.1 haploinsufficiency, a model for Dravet syndrome, exhibits lowered sociability and learning impairment.
Neurobiol. Dis.,
2013
Jan
, 49 (29-40).
514
Zhang JL
et al.
Gabapentin reduces allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing expression level of Nav1.7 and p-ERK1/2 in DRG neurons.
Brain Res.,
2013
Feb
1
, 1493 (13-8).
515
Calloe K
et al.
Characterization and mechanisms of action of novel NaV1.5 channel mutations associated with Brugada syndrome.
Circ Arrhythm Electrophysiol,
2013
Feb
, 6 (177-84).
516
Vanoye CG
et al.
Mechanism of sodium channel NaV1.9 potentiation by G-protein signaling.
J. Gen. Physiol.,
2013
Feb
, 141 (193-202).
517
Desaphy JF
et al.
Molecular dissection of lubeluzole use-dependent block of voltage-gated sodium channels discloses new therapeutic potentials.
Mol. Pharmacol.,
2013
Feb
, 83 (406-15).
518
Zhang LM
et al.
[Association between mutations of SCN9A gene and pain related to Parkinsonism].
Zhonghua Yi Xue Yi Chuan Xue Za Zhi,
2013
Feb
, 30 (17-20).
519
Harris RA
et al.
Human metastable epiallele candidates link to common disorders.
Epigenetics,
2013
Feb
, 8 (157-63).
520
Núñez L
et al.
p.D1690N Nav1.5 rescues p.G1748D mutation gating defects in a compound heterozygous Brugada syndrome patient.
Heart Rhythm,
2013
Feb
, 10 (264-72).
521
Yu J
et al.
SCN5A mutation in Chinese patients with arrhythmogenic right ventricular dysplasia.
Herz,
2013
Dec
8
, ().
522
Tanzi S
et al.
Ion channel recordings on an injection-molded polymer chip.
Lab Chip,
2013
Dec
21
, 13 (4784-93).
523
Gilchrist J
et al.
Crystallographic insights into sodium-channel modulation by the β4 subunit.
Proc. Natl. Acad. Sci. U.S.A.,
2013
Dec
17
, 110 (E5016-24).
524
Ogiwara I
et al.
Nav1.1 haploinsufficiency in excitatory neurons ameliorates seizure-associated sudden death in a mouse model of Dravet syndrome.
Hum. Mol. Genet.,
2013
Dec
1
, 22 (4784-804).
525
Staunton CA
et al.
Ion channels and osteoarthritic pain: potential for novel analgesics.
Curr Pain Headache Rep,
2013
Dec
, 17 (378).
526
Wu F
et al.
Beneficial effects of bumetanide in a CaV1.1-R528H mouse model of hypokalaemic periodic paralysis.
Brain,
2013
Dec
, 136 (3766-74).
527
Volkers L
et al.
Febrile temperatures unmask biophysical defects in Nav1.1 epilepsy mutations supportive of seizure initiation.
J. Gen. Physiol.,
2013
Dec
, 142 (641-53).
528
Doppler K
et al.
[Neuropathic pain associated with Nav1.7 mutations: clinical picture and treatment].
Nervenarzt,
2013
Dec
, 84 (1428-35).
529
Campbell TM
et al.
Functional expression of the voltage-gated sodium channel, Nav1.7, underlies epidermal growth factor-mediated invasion in human [R1.S1] non-small cell lung cancer cells.
J. Cell. Sci.,
2013
Aug
28
, ().
530
Huang J
et al.
Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons.
J. Neurosci.,
2013
Aug
28
, 33 (14087-97).
531
Dustrude ET
et al.
CRMP2 protein SUMOylation modulates NaV1.7 channel trafficking.
J. Biol. Chem.,
2013
Aug
23
, 288 (24316-31).
532
Bradley E
et al.
The cardiac sodium current Na(v)1.5 is functionally expressed in rabbit bronchial smooth muscle cells.
Am. J. Physiol., Cell Physiol.,
2013
Aug
15
, 305 (C427-35).
533
Herren AW
et al.
Post-translational modifications of the cardiac Na channel: contribution of CaMKII-dependent phosphorylation to acquired arrhythmias.
Am. J. Physiol. Heart Circ. Physiol.,
2013
Aug
15
, 305 (H431-45).
534
Stevens M
et al.
Block of a subset of sodium channels exacerbates experimental autoimmune encephalomyelitis.
J. Neuroimmunol.,
2013
Aug
15
, 261 (21-8).
535
Liu S
et al.
Altered PKA modulation in the Nav1.1 epilepsy variant I1656M.
J. Neurophysiol.,
2013
Aug
14
, ().
536
Li A
et al.
Genetic biomarkers in Brugada syndrome.
Biomark Med,
2013
Aug
, 7 (535-46).
537
Kamiński K
et al.
Synthesis and biological properties of new N-Mannich bases derived from 3-methyl-3-phenyl- and 3,3-dimethyl-succinimides. Part V.
Eur J Med Chem,
2013
Aug
, 66 (12-21).
538
Kaufmann SG
et al.
Distribution and function of sodium channel subtypes in human atrial myocardium.
J. Mol. Cell. Cardiol.,
2013
Aug
, 61 (133-41).
539
Abbas N
et al.
The scorpion toxin Amm VIII induces pain hypersensitivity through gain-of-function of TTX-sensitive Na⁺ channels.
Pain,
2013
Aug
, 154 (1204-15).
540
Xie W
et al.
Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia.
Pain,
2013
Aug
, 154 (1170-80).
541
Maury P
et al.
Novel SCN5A mutations in two families with "Brugada-like" ST elevation in the inferior leads and conduction disturbances.
J Interv Card Electrophysiol,
2013
Aug
, 37 (131-40).
542
Toischer K
et al.
Role of late sodium current as a potential arrhythmogenic mechanism in the progression of pressure-induced heart disease.
J. Mol. Cell. Cardiol.,
2013
Aug
, 61 (111-22).
543
Rhett JM
et al.
The perinexus: sign-post on the path to a new model of cardiac conduction?
Trends Cardiovasc. Med.,
2013
Aug
, 23 (222-8).
544
Mourão CB
et al.
Characterization of a novel peptide toxin from Acanthoscurria paulensis spider venom: a distinct cysteine assignment to the HWTX-II family.
Biochemistry,
2013
Apr
9
, 52 (2440-52).
545
Nemoto T
et al.
Endothelin-1-induced down-regulation of NaV1.7 expression in adrenal chromaffin cells: attenuation of catecholamine secretion and tau dephosphorylation.
FEBS Lett.,
2013
Apr
2
, 587 (898-905).
546
Corbett BF
et al.
Sodium channel cleavage is associated with aberrant neuronal activity and cognitive deficits in a mouse model of Alzheimer's disease.
J. Neurosci.,
2013
Apr
17
, 33 (7020-6).
547
Crotti L
et al.
Long QT syndrome-associated mutations in intrauterine fetal death.
JAMA,
2013
Apr
10
, 309 (1473-82).
548
Kalume F
et al.
Sudden unexpected death in a mouse model of Dravet syndrome.
J. Clin. Invest.,
2013
Apr
1
, 123 (1798-808).
549
Shy D
et al.
Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: the multiple pool model.
Biochim. Biophys. Acta,
2013
Apr
, 1833 (886-94).
550
Black JA
et al.
Nav1.5 sodium channels in macrophages in multiple sclerosis lesions.
Mult. Scler.,
2013
Apr
, 19 (532-42).
551
Heimann D
et al.
Linkage between Increased Nociception and Olfaction via a SCN9A Haplotype.
PLoS ONE,
2013
, 8 (e68654).
552
Kramer J
et al.
MICE Models: Superior to the HERG Model in Predicting Torsade de Pointes.
Sci Rep,
2013
, 3 (2100).
553
Hegyi B
et al.
Selectivity problems with drugs acting on cardiac Na⁺ and Ca²⁺ channels.
Curr. Med. Chem.,
2013
, 20 (2552-71).
554
Lübkemeier I
et al.
Deletion of the last five C-terminal amino acid residues of connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling via gap junction channels.
Basic Res. Cardiol.,
2013
, 108 (348).
555
Goldschen-Ohm MP
et al.
Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel.
Nat Commun,
2013
, 4 (1350).
556
Ishikawa T
et al.
Novel SCN3B mutation associated with brugada syndrome affects intracellular trafficking and function of Nav1.5.
Circ. J.,
2013
, 77 (959-67).
557
Zschüntzsch J
et al.
Heterologous expression of a glial Kir channel (KCNJ10) in a neuroblastoma spinal cord (NSC-34) cell line.
Physiol Res,
2013
, 62 (95-105).
558
Atkinson AJ
et al.
Functional, anatomical, and molecular investigation of the cardiac conduction system and arrhythmogenic atrioventricular ring tissue in the rat heart.
J Am Heart Assoc,
2013
, 2 (e000246).
559
Ma Z
et al.
Direct Evidence that Scorpion α-Toxins (Site-3) Modulate Sodium Channel Inactivation by Hindrance of Voltage-Sensor Movements.
PLoS ONE,
2013
, 8 (e77758).
560
Bird EV
et al.
Correlation of Nav1.8 and Nav1.9 sodium channel expression with neuropathic pain in human subjects with lingual nerve neuromas.
Mol Pain,
2013
, 9 (52).
561
Zhang Z
et al.
Kinetic model of Nav1.5 channel provides a subtle insight into slow inactivation associated excitability in cardiac cells.
PLoS ONE,
2013
, 8 (e64286).
562
Zeng Z
et al.
Electrophysiological characteristics of a SCN5A voltage sensors mutation R1629Q associated with Brugada syndrome.
PLoS ONE,
2013
, 8 (e78382).
563
Dun W
et al.
Ankyrin-G participates in INa remodeling in myocytes from the border zones of infarcted canine heart.
PLoS ONE,
2013
, 8 (e78087).
564
Auerbach DS
et al.
Altered cardiac electrophysiology and SUDEP in a model of Dravet syndrome.
PLoS ONE,
2013
, 8 (e77843).
565
Fujii M
et al.
New screening system for selective blockers of voltage-gated K(+) channels using recombinant cell lines dying upon single action potential.
J. Pharmacol. Sci.,
2013
, 123 (147-58).
566
Nakatani Y
et al.
Effect of lamotrigine on Na(v)1.4 voltage-gated sodium channels.
J. Pharmacol. Sci.,
2013
, 123 (203-6).
567
Weibel R
et al.
Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice.
PLoS ONE,
2013
, 8 (e74706).
568
569
Baraban SC
et al.
Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment.
Nat Commun,
2013
, 4 (2410).
570
Reddy Chichili VP
et al.
Structural basis for the modulation of the neuronal voltage-gated sodium channel NaV1.6 by calmodulin.
Sci Rep,
2013
, 3 (2435).
571
Black JA
et al.
NaV1.7: stress-induced changes in immunoreactivity within magnocellular neurosecretory neurons of the supraoptic nucleus.
Mol Pain,
2013
, 9 (39).
572
573
Rong M
et al.
Native pyroglutamation of huwentoxin-IV: a post-translational modification that increases the trapping ability to the sodium channel.
PLoS ONE,
2013
, 8 (e65984).
574
Dolz-Gaitón P
et al.
Functional characterization of a novel frameshift mutation in the C-terminus of the Nav1.5 channel underlying a Brugada syndrome with variable expression in a Spanish family.
PLoS ONE,
2013
, 8 (e81493).
575
Islas AA
et al.
Identification of Navβ1 residues involved in the modulation of the sodium channel Nav1.4.
PLoS ONE,
2013
, 8 (e81995).
576
Biswas S
et al.
Mechanisms of a human skeletal myotonia produced by mutation in the C-terminus of NaV1.4: is Ca2+ regulation defective?
PLoS ONE,
2013
, 8 (e81063).
577
Tsantoulas C
et al.
Probing functional properties of nociceptive axons using a microfluidic culture system.
PLoS ONE,
2013
, 8 (e80722).
578
Liang J
et al.
Effect of amitriptyline on tetrodotoxin-resistant Nav1.9 currents in nociceptive trigeminal neurons.
Mol Pain,
2013
, 9 (31).
579
Cejudo-Román A
et al.
The voltage-gated sodium channel nav1.8 is expressed in human sperm.
PLoS ONE,
2013
, 8 (e76084).
580
Bourdin CM
et al.
Intron retention in mRNA encoding ancillary subunit of insect voltage-gated sodium channel modulates channel expression, gating regulation and drug sensitivity.
PLoS ONE,
2013
, 8 (e67290).
581
Kuang Z
et al.
Mammalian neuronal sodium channel blocker μ-conotoxin BuIIIB has a structured N-terminus that influences potency.
ACS Chem. Biol.,
2013
, 8 (1344-51).
582
Durek T
et al.
Chemical engineering and structural and pharmacological characterization of the α-scorpion toxin OD1.
ACS Chem. Biol.,
2013
, 8 (1215-22).
583
Fatima A
et al.
The disease-specific phenotype in cardiomyocytes derived from induced pluripotent stem cells of two long QT syndrome type 3 patients.
PLoS ONE,
2013
, 8 (e83005).
584
Zhang Y
et al.
Effects of (-)-gallocatechin-3-gallate on tetrodotoxin-resistant voltage-gated sodium channels in rat dorsal root ganglion neurons.
Int J Mol Sci,
2013
, 14 (9779-89).
585
Lossin C
et al.
Altered fast and slow inactivation of the N440K Nav1.4 mutant in a periodic paralysis syndrome.
Neurology,
2012
Sep
4
, 79 (1033-40).
586
Chatelier A
et al.
A distinct de novo expression of Nav1.5 sodium channels in human atrial fibroblasts differentiated into myofibroblasts.
J. Physiol. (Lond.),
2012
Sep
1
, 590 (4307-19).
587
Nozaki C
et al.
δ-Opioid mechanisms for ADL5747 and ADL5859 effects in mice: analgesia, locomotion, and receptor internalization.
J. Pharmacol. Exp. Ther.,
2012
Sep
, 342 (799-807).
588
Jakob A
et al.
Primary erythromelalgia in a 12-year-old boy: positive response to sodium channel blockers despite negative SCN9A mutations.
Klin Padiatr,
2012
Sep
, 224 (309-12).
589
Rivara M
et al.
Inhibition of NaV1.6 sodium channel currents by a novel series of 1,4-disubstituted-triazole derivatives obtained via copper-catalyzed click chemistry.
Bioorg. Med. Chem. Lett.,
2012
Oct
15
, 22 (6401-4).
590
Song W
et al.
The human Nav1.5 F1486 deletion associated with long QT syndrome leads to impaired sodium channel inactivation and reduced lidocaine sensitivity.
J. Physiol. (Lond.),
2012
Oct
15
, 590 (5123-39).
591
Teramoto N
et al.
Resurgent-like currents in mouse vas deferens myocytes are mediated by NaV1.6 voltage-gated sodium channels.
Pflugers Arch.,
2012
Nov
, 464 (493-502).
592
Qiu F
et al.
Increased expression of tetrodotoxin-resistant sodium channels Nav1.8 and Nav1.9 within dorsal root ganglia in a rat model of bone cancer pain.
Neurosci. Lett.,
2012
Mar
23
, 512 (61-6).
593
Saucedo AL
et al.
Solution structure of native and recombinant expressed toxin CssII from the venom of the scorpion Centruroides suffusus suffusus, and their effects on Nav1.5 sodium channels.
Biochim. Biophys. Acta,
2012
Mar
, 1824 (478-87).
594
Tao R
et al.
[Expression of Nav1.8 in human dental pulp].
Zhonghua Kou Qiang Yi Xue Za Zhi,
2012
Mar
, 47 (177-81).
595
Catalano A
et al.
An improved synthesis of m-hydroxymexiletine, a potent mexiletine metabolite.
Drug Metab Lett,
2012
Jun
1
, 6 (124-8).
596
Liu P
et al.
Modulation of neuronal sodium channels by the sea anemone peptide BDS-I.
J. Neurophysiol.,
2012
Jun
, 107 (3155-67).
597
Liu ZR
et al.
Pharmacological kinetics of BmK AS, a sodium channel site 4-specific modulator on Nav1.3.
Neurosci Bull,
2012
Jun
, 28 (209-21).
598
Park JH
et al.
Cysteine racemization during the Fmoc solid phase peptide synthesis of the Nav1.7-selective peptide--protoxin II.
J. Pept. Sci.,
2012
Jul
, 18 (442-8).
599
Marionneau C
et al.
Mass spectrometry-based identification of native cardiac Nav1.5 channel α subunit phosphorylation sites.
J. Proteome Res.,
2012
Dec
7
, 11 (5994-6007).
600
Sierra Bello O
et al.
In silico docking reveals possible Riluzole binding sites on Nav1.6 sodium channel: implications for amyotrophic lateral sclerosis therapy.
J. Theor. Biol.,
2012
Dec
21
, 315 (53-63).
601
Kim YS
et al.
Expression of transient receptor potential ankyrin 1 in human dental pulp.
J Endod,
2012
Aug
, 38 (1087-92).
602
Song W
et al.
Cardiac sodium channel Nav1.5 mutations and cardiac arrhythmia.
Pediatr Cardiol,
2012
Aug
, 33 (943-9).
603
Gao XF
et al.
Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels.
PLoS ONE,
2012
, 7 (e49384).
604
Black JA
et al.
Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn.
Mol Pain,
2012
, 8 (82).
605
Akiyama M
et al.
Dravet syndrome: a genetic epileptic disorder.
Acta Med. Okayama,
2012
, 66 (369-76).
606
Holliday KL
et al.
The non-synonymous SNP, R1150W, in SCN9A is not associated with chronic widespread pain susceptibility.
Mol Pain,
2012
, 8 (72).
607
Klinger AB
et al.
Sea-anemone toxin ATX-II elicits A-fiber-dependent pain and enhances resurgent and persistent sodium currents in large sensory neurons.
Mol Pain,
2012
, 8 (69).
608
Due MR
et al.
Neuroexcitatory effects of morphine-3-glucuronide are dependent on Toll-like receptor 4 signaling.
J Neuroinflammation,
2012
, 9 (200).
609
Kao DJ
et al.
CC chemokine ligand 2 upregulates the current density and expression of TRPV1 channels and Nav1.8 sodium channels in dorsal root ganglion neurons.
J Neuroinflammation,
2012
, 9 (189).
610
O'Reilly AO
et al.
Bisphenol A binds to the local anesthetic receptor site to block the human cardiac sodium channel.
PLoS ONE,
2012
, 7 (e41667).
611
Ito A
et al.
Anti-hyperalgesic effects of calcitonin on neuropathic pain interacting with its peripheral receptors.
Mol Pain,
2012
, 8 (42).
612
Mert T
et al.
Antinociceptive activities of lidocaine and the nav1.8 blocker a803467 in diabetic rats.
J. Am. Assoc. Lab. Anim. Sci.,
2012
, 51 (579-85).
613
Cheng J
et al.
LQTS-associated mutation A257G in α1-syntrophin interacts with the intragenic variant P74L to modify its biophysical phenotype.
Cardiogenetics,
2011
Oct
25
, 1 ().