PubMed 7680726
Referenced in: none
Automatically associated channels: Kv10.1 , Slo1
Title: Ionic channel currents in cultured neurons from human cortex.
Authors: J M Simard, Y Song, K Tewari, S Dunn, K Werrbach-Perez, J R Perez-Polo, H M Eisenberg
Journal, date & volume: J. Neurosci. Res., 1993 Feb 1 , 34, 170-8
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/7680726
Abstract
Ionic channels in human cortical neurons have not been studied extensively. HCN-1 and HCN-1A cells, which recently were established as continuous cultures from human cortical tissue, have been shown by histochemical and immunochemical methods to exhibit a neuronal phenotype, but expression of functional ionic channels was not demonstrated. For the present study, HCN-1 and HCN-1A cells were cultured in Dulbecco's modified Eagle's medium with 15% fetal calf serum, in some cases supplemented with 10 ng/ml nerve growth factor, 10 microM forskolin, and 1 mM dibutyryl cyclic adenosine monophosphate to promote differentiation. Cells or membrane patches were voltage clamped using conventional patch clamp techniques. In HCN-1A cells, we identified a tetrodotoxin-sensitive Na+ current, two types of Ca2+ channel current, including L-type current and a second type that in some respects resembled N-type current, and four types of K+ current, including a delayed outward rectifier that showed voltage-dependent inactivation, two types of noninactivating Ca(2+)-activated K+ channels with slope conductances of 146 and 23 pS (K+i/K+o 145 mM/5 mM), and less frequently, a noninactivating, intermediate conductance channel that was not sensitive to internal Ca2+. When HCN-1A cells were examined after 3 days of exposure to differentiating agents, pronounced morphological changes were evident but no differences in ionic currents were apparent. HCN-1 cells also exhibited K+ and Ca2+ channel currents, but Na+ currents were not detected in these cells.(ABSTRACT TRUNCATED AT 250 WORDS)